THE WAYS OF THE EXPANSION OF THE SITUATIONAL AWARENESS OF LAND-MOBILE ROBOTIC COMPLEXES IN THE CONDITIONS OF CONDUCT NETWORK-CENTRIC BATTLE

Author(s):  
S. Kovalishyn ◽  
V. Symonenkov ◽  
O. Korkin ◽  
S. Abramov

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.

Author(s):  
О. Кravchuk ◽  
V. Symonenkov ◽  
I. Symonenkova ◽  
O. Hryhorev

Today, more than forty countries of the world are engaged in the development of military-purpose robots. A number of unique mobile robots with a wide range of capabilities are already being used by combat and intelligence units of the Armed forces of the developed world countries to conduct battlefield intelligence and support tactical groups. At present, the issue of using the latest information technology in the field of military robotics is thoroughly investigated, and the creation of highly effective information management systems in the land-mobile robotic complexes has acquired a new phase associated with the use of distributed information and sensory systems and consists in the transition from application of separate sensors and devices to the construction of modular information subsystems, which provide the availability of various data sources and complex methods of information processing. The purpose of the article is to investigate the ways to increase the autonomy of the land-mobile robotic complexes using in a non-deterministic conditions of modern combat. Relevance of researches is connected with the necessity of creation of highly effective information and control systems in the perspective robotic means for the needs of Land Forces of Ukraine. The development of the Armed Forces of Ukraine management system based on the criteria adopted by the EU and NATO member states is one of the main directions of increasing the effectiveness of the use of forces (forces), which involves achieving the principles and standards necessary for Ukraine to become a member of the EU and NATO. The inherent features of achieving these criteria will be the transition to a reduction of tasks of the combined-arms units and the large-scale use of high-precision weapons and land remote-controlled robotic devices. According to the views of the leading specialists in the field of robotics, the automation of information subsystems and components of the land-mobile robotic complexes can increase safety, reliability, error-tolerance and the effectiveness of the use of robotic means by standardizing the necessary actions with minimal human intervention, that is, a significant increase in the autonomy of the land-mobile robotic complexes for the needs of Land Forces of Ukraine.


Author(s):  
Alfredo Cuzzocrea ◽  
Marcel Karnstedt ◽  
Manfred Hauswirth ◽  
Kai-Uwe Sattler ◽  
Roman Schmidt

Range queries are a very powerful tool in a wide range of data management systems and are vital to a multitude of applications. The hierarchy of structured overlay systems can be utilized in order to provide efficient techniques for processing them, resulting in the support of applications and techniques based on range queries in large-scale distributed information systems. On the other hand, due to the rapid development of the Web, applications based on the P2P paradigm gain more and more interest, having such systems started to evolve towards adopting standard database functionalities in terms of complex query processing support. This goes far beyond simple key lookups, as provided by standard distributed hashtables (DHTs) systems, which makes estimating the completeness of query answers a crucial challenge. Unfortunately, due to the limited knowledge and the usually best-effort characteristics, deciding about the completeness of query results, e.g., getting an idea when a query is finished or what amount of results is still missing, is very challenging. There is not only an urgent need to provide this information to the user issuing queries, but also for implementing sophisticated and efficient processing techniques based on them. In this chapter, the authors propose a method for solving this task. They discuss the applicability and quality of the estimations, present an implementation and evaluation for the P-Grid system, and show how to adapt the technique to other overlays. The authors also discuss the semantics of completeness for complex queries in P2P database systems and propose methods based on the notion of routing graphs for estimating the number of expected query answers. Finally, they discuss probabilistic guarantees for the estimated values and evaluate the proposed methods through an implemented system.


Author(s):  
V. C. Kannan ◽  
A. K. Singh ◽  
R. B. Irwin ◽  
S. Chittipeddi ◽  
F. D. Nkansah ◽  
...  

Titanium nitride (TiN) films have historically been used as diffusion barrier between silicon and aluminum, as an adhesion layer for tungsten deposition and as an interconnect material etc. Recently, the role of TiN films as contact barriers in very large scale silicon integrated circuits (VLSI) has been extensively studied. TiN films have resistivities on the order of 20μ Ω-cm which is much lower than that of titanium (nearly 66μ Ω-cm). Deposited TiN films show resistivities which vary from 20 to 100μ Ω-cm depending upon the type of deposition and process conditions. TiNx is known to have a NaCl type crystal structure for a wide range of compositions. Change in color from metallic luster to gold reflects the stabilization of the TiNx (FCC) phase over the close packed Ti(N) hexagonal phase. It was found that TiN (1:1) ideal composition with the FCC (NaCl-type) structure gives the best electrical property.


1994 ◽  
Vol 29 (12) ◽  
pp. 149-156 ◽  
Author(s):  
Marcus Höfken ◽  
Katharina Zähringer ◽  
Franz Bischof

A novel agitating system has been developed which allows for individual or combined operation of stirring and aeration processes. Basic fluid mechanical considerations led to the innovative hyperboloid design of the stirrer body, which ensures high efficiencies in the stirring and the aeration mode, gentle circulation with low shear forces, excellent controllability, and a wide range of applications. This paper presents the basic considerations which led to the operating principle, the technical realization of the system and experimental results in a large-scale plant. The characteristics of the system and the differences to other stirring and aeration systems are illustrated. Details of the technical realization are shown, which conform to the specific demands of applications in the biological treatment of waste water. Special regard is given to applications in the upgrading of small compact waste water treatment plants.


2012 ◽  
Vol 9 (1) ◽  
pp. 175-180
Author(s):  
Yu.D. Chashechkin

According to the results of visualization of streams, the existence of structures in a wide range of scales is noted: from galactic to micron. The use of a fundamental system of equations is substantiated based on the results of comparing symmetries of various flow models with the usage of theoretical group methods. Complete solutions of the system are found by the methods of the singular perturbations theory with a condition of compatibility, which determines the characteristic equation. A comparison of complete solutions with experimental data shows that regular solutions characterize large-scale components of the flow, a rich family of singular solutions describes formation of the thin media structure. Examples of calculations and observations of stratified, rotating and multiphase media are given. The requirements for the technique of an adequate experiment are discussed.


Author(s):  
Eun-Young Mun ◽  
Anne E. Ray

Integrative data analysis (IDA) is a promising new approach in psychological research and has been well received in the field of alcohol research. This chapter provides a larger unifying research synthesis framework for IDA. Major advantages of IDA of individual participant-level data include better and more flexible ways to examine subgroups, model complex relationships, deal with methodological and clinical heterogeneity, and examine infrequently occurring behaviors. However, between-study heterogeneity in measures, designs, and samples and systematic study-level missing data are significant barriers to IDA and, more broadly, to large-scale research synthesis. Based on the authors’ experience working on the Project INTEGRATE data set, which combined individual participant-level data from 24 independent college brief alcohol intervention studies, it is also recognized that IDA investigations require a wide range of expertise and considerable resources and that some minimum standards for reporting IDA studies may be needed to improve transparency and quality of evidence.


The Les Houches Summer School 2015 covered the emerging fields of cavity optomechanics and quantum nanomechanics. Optomechanics is flourishing and its concepts and techniques are now applied to a wide range of topics. Modern quantum optomechanics was born in the late 70s in the framework of gravitational wave interferometry, initially focusing on the quantum limits of displacement measurements. Carlton Caves, Vladimir Braginsky, and others realized that the sensitivity of the anticipated large-scale gravitational-wave interferometers (GWI) was fundamentally limited by the quantum fluctuations of the measurement laser beam. After tremendous experimental progress, the sensitivity of the upcoming next generation of GWI will effectively be limited by quantum noise. In this way, quantum-optomechanical effects will directly affect the operation of what is arguably the world’s most impressive precision experiment. However, optomechanics has also gained a life of its own with a focus on the quantum aspects of moving mirrors. Laser light can be used to cool mechanical resonators well below the temperature of their environment. After proof-of-principle demonstrations of this cooling in 2006, a number of systems were used as the field gradually merged with its condensed matter cousin (nanomechanical systems) to try to reach the mechanical quantum ground state, eventually demonstrated in 2010 by pure cryogenic techniques and a year later by a combination of cryogenic and radiation-pressure cooling. The book covers all aspects—historical, theoretical, experimental—of the field, with its applications to quantum measurement, foundations of quantum mechanics and quantum information. Essential reading for any researcher in the field.


2021 ◽  
Vol 13 (9) ◽  
pp. 4772
Author(s):  
Hanna Klikocka ◽  
Aneta Zakrzewska ◽  
Piotr Chojnacki

The article describes and sets the definition of different farm models under the categories of being family, small, and large-scale commercial farms. The distinction was based on the structure of the workforce and the relationship between agricultural income and the minimum wage. Family farms were dominated by the farming family providing the labour and their income per capita exceeded the net minimum wage in the country. The larger commercial farms feature a predominance of hired labour. Based on surveys, it was found that in 2016 in the EU-28 there were 10,467,000 farms (EU-13—57.3%, EU-15—42.7%). They carried out agricultural activities on an area of 173,338,000 ha (EU-13—28.5%, EU-15—71.5%). Countries of the EU-28 generated a standard output (SO) amounting to EUR 364,118,827,100 (EU-13—17.2% and EU-15—82.8%). After the delimitation, it was shown that small farming (70.8%) was the predominant form of management in the European Union (EU-13—88.2% and EU-15—79.8%) compared to family farming (18.4%) (EU-13—10.5% and EU-15—29%). In most EU countries the largest share of land resources pertains to small farms (35.6%) and family farms (38.6%) (UAA—utilised agricultural area of farms).


2021 ◽  
Vol 14 ◽  
pp. 117862212110281
Author(s):  
Nieves Fernandez-Anez ◽  
Andrey Krasovskiy ◽  
Mortimer Müller ◽  
Harald Vacik ◽  
Jan Baetens ◽  
...  

Changes in climate, land use, and land management impact the occurrence and severity of wildland fires in many parts of the world. This is particularly evident in Europe, where ongoing changes in land use have strongly modified fire patterns over the last decades. Although satellite data by the European Forest Fire Information System provide large-scale wildland fire statistics across European countries, there is still a crucial need to collect and summarize in-depth local analysis and understanding of the wildland fire condition and associated challenges across Europe. This article aims to provide a general overview of the current wildland fire patterns and challenges as perceived by national representatives, supplemented by national fire statistics (2009–2018) across Europe. For each of the 31 countries included, we present a perspective authored by scientists or practitioners from each respective country, representing a wide range of disciplines and cultural backgrounds. The authors were selected from members of the COST Action “Fire and the Earth System: Science & Society” funded by the European Commission with the aim to share knowledge and improve communication about wildland fire. Where relevant, a brief overview of key studies, particular wildland fire challenges a country is facing, and an overview of notable recent fire events are also presented. Key perceived challenges included (1) the lack of consistent and detailed records for wildland fire events, within and across countries, (2) an increase in wildland fires that pose a risk to properties and human life due to high population densities and sprawl into forested regions, and (3) the view that, irrespective of changes in management, climate change is likely to increase the frequency and impact of wildland fires in the coming decades. Addressing challenge (1) will not only be valuable in advancing national and pan-European wildland fire management strategies, but also in evaluating perceptions (2) and (3) against more robust quantitative evidence.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Sungmin O. ◽  
Rene Orth

AbstractWhile soil moisture information is essential for a wide range of hydrologic and climate applications, spatially-continuous soil moisture data is only available from satellite observations or model simulations. Here we present a global, long-term dataset of soil moisture derived through machine learning trained with in-situ measurements, SoMo.ml. We train a Long Short-Term Memory (LSTM) model to extrapolate daily soil moisture dynamics in space and in time, based on in-situ data collected from more than 1,000 stations across the globe. SoMo.ml provides multi-layer soil moisture data (0–10 cm, 10–30 cm, and 30–50 cm) at 0.25° spatial and daily temporal resolution over the period 2000–2019. The performance of the resulting dataset is evaluated through cross validation and inter-comparison with existing soil moisture datasets. SoMo.ml performs especially well in terms of temporal dynamics, making it particularly useful for applications requiring time-varying soil moisture, such as anomaly detection and memory analyses. SoMo.ml complements the existing suite of modelled and satellite-based datasets given its distinct derivation, to support large-scale hydrological, meteorological, and ecological analyses.


Sign in / Sign up

Export Citation Format

Share Document