scholarly journals Investigation of the effect of hydrocinnamic (3-phenylpropanoic) acid on the microbiological corrosion of steel

Author(s):  
А.А. Грибанькова ◽  
М.А. Агиевич ◽  
О.А. Евтуховская ◽  
В.В. Гурченко ◽  
С. Чжай ◽  
...  

В основе работы лежит исследование воздействия органического соединения (ОС) – гидрокоричной (3-фенилпропановой) кислоты на бактериальные клетки СРБ (сульфатредуцирующих бактерий) являющиеся стимуляторами коррозионных процессов. Подбор условий использования и количественная оценка эффективности ингибирующего (биоцидного) действия исследуемого ОС, которое может быть применено для защиты стали от коррозии в средах, содержащих сульфатредуцирующие бактерии. В ходе исследования было изучено влияние ОС на развитие сульфатредуцирующих бактерий и определены такие параметры, как изменение значения pH и окислительно-восстановительного потенциала образцов в среде, численности бактерий и содержания биогенного сероводорода в зависимости от концентрации используемого ОС. Сделаны основные выводы о ингибирующем коррозию и биоцидном действиях испытуемого органического соединения путем оценки скорости коррозии образцов стали и защитном эффекте в зависимости от выбранных концентраций органического соединения методом гравиметрии. Дополнительная оценка ингибирующего действия была проведена методом электрохимической импедансной спектроскопии и методом снятия поляризационных кривых испытуемых образцов. The study is based on the study of the effect of an organic compound (OC) – hydrocinnamic (3-phenylpropanoic) acid on the bacterial cells of SRB (sulfate-reducing bacteria), which are stimulants of corrosion processes. Selection of conditions of use and a quantitative assessment of the effectiveness of the inhibitory (biocidal) action of the studied OC, which can be used to protect steel from corrosion in environments containing SRB. In the course of the study, the effect of OC on the development of SRB was studied and such parameters as the change in the pH value and the redox potential of the samples in the medium, the number of bacteria and the content of biogenic hydrogen sulfide depending on the concentration of the used OC were determined. The main conclusions are drawn about the inhibitory corrosion and biocidal actions of the test OC by assessing the corrosion rate of steel samples and the protective effect depending on the selected concentrations of the OC by gravimetry. An additional assessment of the inhibitory effect was carried out by the method of electrochemical impedance spectroscopy and by the method of taking the polarization curves of the test samples.

2012 ◽  
Vol 610-613 ◽  
pp. 243-248
Author(s):  
Xin Wang ◽  
Jin Xu ◽  
Cheng Sun

Corrosion behavior of steel Q235 was investigated during natural evaporation in soils with and without sulfate reducing bacteria (SRB) by microbiological analysis, electrochemical impedance spectroscopy (EIS), energy dispersive X-ray analysis (EDXA) and electron-probe X-ray microanalysis (EPMA). The results show that during natural evaporation, oxygen content increases, amounts of SRB decrease, and the corrosion rates of steel Q235 increase with decreasing humidity of soils with and without SRB. Increments of the corrosion rates are much bigger in soils with SRB than those without SRB.


2011 ◽  
Vol 368-373 ◽  
pp. 42-47
Author(s):  
Fu Shao Li ◽  
Mao Zhong An ◽  
Dong Xia Duan

Corrosion behaviors of low nickel alloy high strength steel (LNAHSS) was studied by electrochemical impedance spectroscopy and scanning electron microscopy when the coupons of LNAHSS were exposed to the seawater culture media. As the results, LNAHSS was uniformly corroded in the fresh sterilized culture medium in a mode of active dissolution; in the culture medium with sulfate-reducing bacteria (SRB), LNAHSS was protected by the iron sulfides layer to some extent in the early stage of exposure, but severely localized corrosion subsequently occurred resulting from the localized breakdown of iron sulfides layer. So, in risks estimation, special precautions should be taken when LNAHSS serves in the environments containing SRB as the localized area can become the tress raiser.


2018 ◽  
Vol 36 (4) ◽  
pp. 373-384 ◽  
Author(s):  
Rachid Idouhli ◽  
Abdelouahd Oukhrib ◽  
Yassine Koumya ◽  
Abdesselam Abouelfida ◽  
Abdelaziz Benyaich ◽  
...  

AbstractThe inhibition efficiency of Atlas cedar essential oil (ACEO) as a green corrosion inhibitor on steel in 1 m hydrochloric acidic was studied. The effects of temperature and the concentration of the ACEO inhibitor on the inhibition efficiency were studied. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to test the performance of the inhibitor. We found that the inhibition efficiency of ACEO exceeded 88% at 1 g/l at 298 K and increased with increasing concentration. The evaluation of activation and thermodynamic parameters reveals that the organic molecules of cedar essential oil and its fractions act by chemical adsorption on the metal surface. The adsorption of the inhibitor on the surface of steel is in a good agreement with the Langmuir adsorption isotherm. Increasing concentration of the corrosion inhibitor enhances the surface coverage and formation of a protective film.


2018 ◽  
Vol 65 (1) ◽  
pp. 46-52
Author(s):  
Fengling Xu ◽  
Zhenghui Qiu ◽  
Ri Qiu ◽  
Jiadong Yang ◽  
Cunguo Lin

Purpose For mitigating biocorrosion induced by sulfate-reducing bacteria (SRB) in seawater, the zwitterionic molecule layer (ZML) of poly (sulfobetaine methacrylate) is grafted onto B10 surface by chemical vapor deposition and surface-initiated atom transfer radical polymerization. Design/methodology/approach Energy-dispersive spectroscopy-attenuated total reflectance Fourier transform infrared spectroscopy and static contact angle measurements are used to characterize the as-formed layer. Findings After surface modification, B10 can significantly reduce SRB adhesion, demonstrating the good antifouling property. Further, the biocorrosion inhibition is investigated by potentiodynamic polarization and electrochemical impedance spectroscopy, indicating that ZML exhibits high resistance to biocorrosion with inhibition efficiency of approximately 90 per cent. Originality/value ZML performs a dual feature, i.e. antifouling film and corrosion inhibitor, for the biocorrosion inhibition.


Coatings ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1116
Author(s):  
Hongwei Liu ◽  
Haixian Liu ◽  
Yuxuan Zhang

In this work, the galvanic corrosion behavior of sulfate reducing Desulfotomaculum nigrificans biofilm-covered and uncovered carbon steel was investigated using various electrochemical measurements. The results showed that the bare specimen in the abiotic solution functions as the anode; whereas the biofilm-covered specimen in the SRB-containing solution functions as the cathode after two electrodes being coupled. The anodic reaction of specimen in the biotic solution containing SRB was inhibited; whereas the cathodic reaction was considerably promoted after coupling. Hence, localized corrosion of specimen in the abiotic solution was observed due to the galvanic corrosion effect. SRB could still accelerate steel corrosion even after coupling, but the results indicate that the contribution of SRB to steel corrosion decreased. The localized corrosion of steel in the SRB-containing environments not only involved the SRB biofilm, but also a galvanic corrosion effect. The flow of electrons from the anodic dissolution of Fe in the abiotic solution to the SRB cells of cathodic area decreased the acceptance capacity of electrons by SRB from steel beneath biofilm. As a result, the steel corrosion beneath SRB biofilm decreased after coupling.


CORROSION ◽  
1961 ◽  
Vol 17 (8) ◽  
pp. 386t-390t ◽  
Author(s):  
J. M. SHARPLEY

Abstract It is commonly observed that most bacterial corrosion in waterfloods occurs as pit corrosion. A hypothesis has been advanced to explain a portion of the mechanism underlying bacterial pit corrosion and a suggested method has been presented for determining the possible relationships between the general microbial flora and microorganisms capable of participating in pit corrosion. Topics discussed include role of sulfate-reducing bacteria, correlation between bacteriological examinations and corrosion damage, cultural techniques, laboratory and field evaluation techniques, and detection of sessile microorganisms. 3.3.4, 3.2.2, 8.4.3


2020 ◽  
Vol 11 (2) ◽  
pp. 278-282
Author(s):  
N. S. Verkholiak ◽  
T. B. Peretyatko ◽  
A. A. Halushka

The usage of microorganisms to clean the environment from xenobiotics, in particular chlorine-containing ones, is a promising method of detoxifying the contaminated environment. Sulfate-reducing bacteria Desulfovibrio desulfuricans Ya-11, isolated from Yavoriv Lake, and Desulfotomaculum AR1, isolated from the Lviv sewage treatment system, are able to grow under conditions of environmental contamination by aromatic compounds and chlorine-containing substances. Due to their high redox potential, chlorate and perchlorate ions can be ideal electron acceptors for the metabolism of microorganisms. To test the growth of the tested microorganisms under the influence of perchlorate ions, bacteria were cultured in modified Postgate C medium with ClO4–. Biomass was determined turbidimetrically, the content of sulfate ions and hydrogen sulfide – photoelectrocolorimetrically, the content of perchlorate ions – permanganatometrically. The study of the ability of sulfate-reducing bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 to grow in a medium with perchlorate ions as electron acceptors showed the inhibitory effect of ClO4– on sulfate ion reduction by bacteria. Bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 are able to grow in environments with aromatic hydrocarbons, in particular toluene. The possibility of the growth of sulfate-reducing bacteria in the presence of toluene as an electron donor and perchlorate ions as an electron acceptor was investigated. The efficiency of perchlorate ion utilization by sulfate-reducing bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 was about 90 %. The effect of molybdenum on the reduction of perchlorate ions by Desulfotomaculum AR1 is shown in the paper. Immobilization of bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 was carried out in 3% agar and on wood chips. The ability of bacteria, immobilized on these media, to purify the aqueous medium from perchlorate ions was investigated. Reduction of perchlorate ions is more efficiently performed by cells of Desulfotomaculum AR1 and D. desulfuricans Ya-11 bacteria immobilized in agar than on wood chips. Sulfate-reducing bacteria Desulfotomaculum AR1 and D. desulfuricans Ya-11 are able to use perchlorate ions as electron acceptors, purifying the polluted aquatic environment from these pollutants.


Sign in / Sign up

Export Citation Format

Share Document