Inhibitory effect of Atlas cedar essential oil on the corrosion of steel in 1 m HCl

2018 ◽  
Vol 36 (4) ◽  
pp. 373-384 ◽  
Author(s):  
Rachid Idouhli ◽  
Abdelouahd Oukhrib ◽  
Yassine Koumya ◽  
Abdesselam Abouelfida ◽  
Abdelaziz Benyaich ◽  
...  

AbstractThe inhibition efficiency of Atlas cedar essential oil (ACEO) as a green corrosion inhibitor on steel in 1 m hydrochloric acidic was studied. The effects of temperature and the concentration of the ACEO inhibitor on the inhibition efficiency were studied. Potentiodynamic polarization and electrochemical impedance spectroscopy were used to test the performance of the inhibitor. We found that the inhibition efficiency of ACEO exceeded 88% at 1 g/l at 298 K and increased with increasing concentration. The evaluation of activation and thermodynamic parameters reveals that the organic molecules of cedar essential oil and its fractions act by chemical adsorption on the metal surface. The adsorption of the inhibitor on the surface of steel is in a good agreement with the Langmuir adsorption isotherm. Increasing concentration of the corrosion inhibitor enhances the surface coverage and formation of a protective film.

2014 ◽  
Vol 960-961 ◽  
pp. 229-233 ◽  
Author(s):  
Li Zheng ◽  
Ji Liu ◽  
Zhi Hua Tao ◽  
Wei He ◽  
Ding Jun Xiao ◽  
...  

This paper is mainly to discuss that myclobutanil as corrosion inhibitor and its corrosion efficiency were evaluated via electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization. The potentiodynamic polarization measurements showed that the inhibition efficiency increases sharply with the increasing of concentration of myclobutanil, and the highest inhibition efficiency of the myclobutanil reached 84.3% at 3.2×10-4 mol/L in 1 mol/L HCl. The result also indicated that myclobutanil belongs to the mixed type inhibitor. The results obtained from EIS measurements are in good agreement with that obtained from potentiodynamic polarization.


2021 ◽  
Vol 12 (5) ◽  
pp. 6487-6503

The aim of the present work is to investigate the inhibitory effect of the aerial part of Daucus carota L essential oil (EO) on mild steel in a 1.0M HCl solution. The electrochemical study is performed using potentiodynamic polarization (PDP) curves, and electrochemical impedance spectroscopy (EIS) measurements in the presence of various concentrations of the examined Daucus carota L essential oil (EO). PDP results show that the studied EO behaved as a mixed-type inhibitor. EIS measurements indicated that the EO could inhibit the corrosion of mild steel by the formation of a protective film on the surface of mild steel. The experimental results showed an efficiency of 96.5% for a concentration of 2 g/l. In addition, The DFT results proved that the major components, especially -pinene (23.5%), -Bisabolene (3.96%), and Pseudo limonene (7.20%) having a high electron-accepting ability and interact actively with the iron surface, which may be responsible for the inhibition ability of the investigated EO. Furthermore, the computational complies with the experimental data.


2010 ◽  
Vol 7 (s1) ◽  
pp. S35-S42 ◽  
Author(s):  
K. Bouhrira ◽  
F. Ouahiba ◽  
D. Zerouali ◽  
B. Hammouti ◽  
M. Zertoubi ◽  
...  

The effect of 2-phenyl-3-nitroso-imidazo[1,2-a]pyridine (PNIP) on the corrosion inhibition of carbon-steel in 0.5 M HCl was studied by weight loss and different electrochemical techniques such as electrochemical impedance spectroscopy (EIS), potentiodynamic polarization. The obtained results showed that PNIP effectively reduces the corrosion rate of carbon steel. Inhibition efficiency (E%) increases with inhibitor concentration to attain 88% at 10-3M. Adsorption of that PNIP on the carbon steel surface in 0.5 M HCl follows the Langmuir isotherm model. E% values obtained from various methods used are in good agreement. SEM characterization of the steel surface is made.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3679
Author(s):  
Ismat H. Ali

This study aimed to examine the extract of barks of Tamarix aphylla as a corrosion inhibitor. The methodology briefly includes plant sample collection, extraction of the corrosion inhibitor, gravimetric analysis, plotting potentiodynamic polarization plots, electrochemical impedance spectroscopic measurements, optimization of conditions, and preparation of the inhibitor products. The results show that the values of inhibition efficiency (IE%) increased as the concentrations of the inhibitor increased, with a maximum achievable inhibition efficiency of 85.0%. Potentiodynamic polarization (PP) tests revealed that the extract acts as a dual-type inhibitor. The results obtained from electrochemical impedance spectroscopy (EIS) measurements indicate an increase in polarisation resistance, confirming the inhibitive capacity of the tested inhibitor. The adsorption of the inhibitor on the steel surface follows the Langmuir adsorption isotherm model and involves competitive physio-sorption and chemisorption mechanisms. The EIS technique was utilized to investigate the effect of temperature on corrosion inhibition within the 298–328 K temperature range. Results confirm that the inhibition efficiency (IE%) of the inhibitor decreased slightly as the temperature increased. Lastly, the thermodynamic parameters for the inhibitor were calculated.


Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


2019 ◽  
Vol 7 (4.14) ◽  
pp. 168
Author(s):  
N Z. Nor Hashim ◽  
K Kassim ◽  
F H. Zaidon

Two N-substituted thiosemicarbazone derivatives namely as 2-(4-chlorobenzylidene)-N-phenylhydrazinecarbothioamide and 2-benzylidene-N-phenylhydrazinecarbothioamide (L1 and L2, respectively) have been tested as corrosion inhibitors on mild steel in 1 M HCl. The ligands were synthesized and investigated using potentiodynamic polarization (PD) and electrochemical impedance spectroscopy (EIS).  The obtained results indicated that inhibition efficiency, (IE, %) L1 increased with increasing inhibitor concentrations which behaved as a good corrosion inhibitor compared to L2. The synthesized ligands were successfully characterized by melting point, elemental analysis (C, H, N, and S), Fourier-transform infrared spectroscopy (FT-IR) and NMR (1H and 13C) spectroscopy. The excellent inhibition effectiveness for both compounds on mild steel before and after immersion in 1 M HCl solution containing 40 ppm of L1 and L2 were also verified by scanning electron microscope (SEM). Based on potentiodynamic polarization results, it can be concluded that all investigated compounds are mixed-type inhibitors and obey the Langmuir adsorption isotherm. 


2015 ◽  
Vol 44 (6) ◽  
pp. 371-378 ◽  
Author(s):  
Y. Sangeetha ◽  
S. Meenakshi ◽  
C. Sairam Sundaram

Purpose – The purpose of this paper is to develop an eco-friendly corrosion inhibitor for mild steel in 1 M HCl. Design/methodology/approach – A pharmaceutical drug acetyl G was investigated for its corrosion inhibition efficiency using weight loss method, potentiodynamic polarisation and electrochemical impedance spectroscopy. Findings – The inhibition efficiency increased with increase in inhibitor concentration. Results from polarisation studies revealed mixed type of inhibition. Impedance studies, scanning electron microscopy and Fourier transform spectroscopy confirm the adsorption of inhibitor on the mild steel surface. Research limitations/implications – The drug acetyl G has sulphur and nitrogen atoms which effectively block the corrosion of mild steel and is non-toxic and has good inhibition efficiency. Practical implications – This method provides an excellent, non-toxic and cost-effective material as a corrosion inhibitor for mild steel in acid medium. Originality/value – Application of this drug as a corrosion inhibitor has not been reported yet in the literature. Replacing the organic inhibitors, this green inhibitor shows excellent inhibition efficiency. This is adsorbed excellently on the mild steel surface due to the presence of long chain and hetero atoms. Thus, the drug retards the corrosion reaction.


Author(s):  
А.А. Грибанькова ◽  
М.А. Агиевич ◽  
О.А. Евтуховская ◽  
В.В. Гурченко ◽  
С. Чжай ◽  
...  

В основе работы лежит исследование воздействия органического соединения (ОС) – гидрокоричной (3-фенилпропановой) кислоты на бактериальные клетки СРБ (сульфатредуцирующих бактерий) являющиеся стимуляторами коррозионных процессов. Подбор условий использования и количественная оценка эффективности ингибирующего (биоцидного) действия исследуемого ОС, которое может быть применено для защиты стали от коррозии в средах, содержащих сульфатредуцирующие бактерии. В ходе исследования было изучено влияние ОС на развитие сульфатредуцирующих бактерий и определены такие параметры, как изменение значения pH и окислительно-восстановительного потенциала образцов в среде, численности бактерий и содержания биогенного сероводорода в зависимости от концентрации используемого ОС. Сделаны основные выводы о ингибирующем коррозию и биоцидном действиях испытуемого органического соединения путем оценки скорости коррозии образцов стали и защитном эффекте в зависимости от выбранных концентраций органического соединения методом гравиметрии. Дополнительная оценка ингибирующего действия была проведена методом электрохимической импедансной спектроскопии и методом снятия поляризационных кривых испытуемых образцов. The study is based on the study of the effect of an organic compound (OC) – hydrocinnamic (3-phenylpropanoic) acid on the bacterial cells of SRB (sulfate-reducing bacteria), which are stimulants of corrosion processes. Selection of conditions of use and a quantitative assessment of the effectiveness of the inhibitory (biocidal) action of the studied OC, which can be used to protect steel from corrosion in environments containing SRB. In the course of the study, the effect of OC on the development of SRB was studied and such parameters as the change in the pH value and the redox potential of the samples in the medium, the number of bacteria and the content of biogenic hydrogen sulfide depending on the concentration of the used OC were determined. The main conclusions are drawn about the inhibitory corrosion and biocidal actions of the test OC by assessing the corrosion rate of steel samples and the protective effect depending on the selected concentrations of the OC by gravimetry. An additional assessment of the inhibitory effect was carried out by the method of electrochemical impedance spectroscopy and by the method of taking the polarization curves of the test samples.


Author(s):  
A. H. EL-ASKALANY ◽  
S. I. MOSTAFA ◽  
A. M. EID

The inhibitive action of Saponinic extract of both Zygophylium album and Zygophylium Egyptian leaves which could serve as eco-friendly materials was investigated on the corrosion of N80 carbon steel in 1 M HCl solution. The techniques employed for the study were weight loss measurements. potentiodynamic polarization, electrochemical frequency modulation (EFM), and electrochemical impedance spectroscopy (EIS). The results obtained show that these extracts could serve as an effective inhibitor for N80 carbon steel. The percentage inhibition increases with increasing concentration of the inhibitor at 25 °C The percentage inhibitor efficiency above 90% was obtained at a concentration of 700 ppm for both extracts. The corrosion rates of steel and inhibitive efficiencies obtained from impedance and polarization measurements were in good agreement with those obtained from weight loss measurements. Potentiodynamic polarization studies clearly reveal that both extracts act as mixed-type inhibitors The study shows that the inhibition efficiency decreased with the temperature rise of the medium. Heat of adsorption and thermodynamic parameters and indicated that the adsorption process is mainly controlled by the physical adsorption process.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4416
Author(s):  
Sang-Jin Ko ◽  
Seok-Ryul Choi ◽  
Min-Sung Hong ◽  
Woo-Cheol Kim ◽  
Jung-Gu Kim

Many research studies have been conducted on the corrosion inhibition performance of imidazole in acidic environments such as in the piping of a petrochemical plant. However, there has been no study on the effect of imidazole in alkaline conditions such as a local district water heating environment. Therefore, in this study, the effect of imidazole as a corrosion inhibitor on carbon steel weldment was investigated in alkaline district heating water. Inhibition efficiency and electrochemical properties were investigated by potentiodynamic polarization test and electrochemical impedance spectroscopy. As the concentration of imidazole increased up to 500 ppm, inhibition efficiency increased up to 91.7%. At 1000 ppm, inhibition efficiency decreased. Atomic force microscopy showed that surface coverage of imidazole at 1000 ppm is lower than that of imidazole at 500 ppm. X-ray photoelectron spectroscopy showed that with 500 ppm of imidazole, the amount of pyrrole type interaction is 4.8 times larger than pyridine type interaction. At 1000 ppm of imidazole, the amount of pyridine type interaction is 3.49 times larger than pyrrole type interaction. Depending on the concentration of imidazole, the ratio of interaction between carbon steel and imidazole affected inhibition efficiency.


Sign in / Sign up

Export Citation Format

Share Document