scholarly journals Optimal design of buckling resistance for a large deepwater functional tank (DFT)

Author(s):  
Wang Yi ◽  
Zhang Fangfang ◽  
Xu Fan

Buckling resistance is a major challenge in the design of a large deepwater functional tank (DFT), and internal stiffeners are commonly used to strengthen its shell. In the present paper, the influence of various stiffener parameters on the stability of the DFT was studied via the finite element method. The strengthening scheme of the DFT was optimised by the orthogonal test method, by which the influence of various parameters on the shell mass, internal volume and stability of the structure was evaluated. The optimal buckling resistance scheme can be obtained using the comprehensive balance method based on the orthogonal assessment results.


2014 ◽  
Vol 614 ◽  
pp. 32-35 ◽  
Author(s):  
Ming Song Zhang ◽  
Yi Zhang ◽  
Jian Jun Ke ◽  
Xiao Wei Li ◽  
Lian Bing Cheng

The finite element method was used to study tangential roller method impact on the stability of circular saw blade. Using 30 ° cyclic symmetric model is analyzed. The results show that the tension of the saw blade is not the same, and tensioning effect is different, when the tangential roller pressure is not same. At the same time, after tangential roller, the face run out of saw blade is small, which show that the smoothness of tangential roller is better.



2011 ◽  
Vol 110-116 ◽  
pp. 1483-1490
Author(s):  
Hoon Hyung Jung ◽  
Chae Sil Kim

This paper describes a finite element structural analysis model and determines analysis methods appropriate for determining the stability of the mast of a crane. This analysis model allows various analysis approaches to be applied to the conditions affecting the construction of a large gantry crane in order to ensure the stability of the mast of the crane. The finite element method is used as a way to construct an analytical model that can help ensure the stability of the mast in two stages. The model is used in a two-stage analytical process that takes into account the conditions of the model. In this way, the model can be used to judge the stability of the mast. By allowing variation in the analysis approach used for the crane mast, the analysis model may be changed if the conditions of the one-girder gantry crane require. Designers may apply this method for the active analysis of the stability of a crane mast.



2011 ◽  
Vol 368-373 ◽  
pp. 234-240
Author(s):  
Shu Li Wang ◽  
Man Gen Mu ◽  
Ran Wang ◽  
Wen Bo Cui

This paper presents the results of a study on a joint slope deformation affecting the western slope of the GuangYang highway (YangQuan, China). Fieldwork identified the ongoing deformational process and assisted in defining its mechanisms, evolution and controlling factors. Here we discuss how to use limit equilibrium methods to calculate the behavior of slopes and to use the finite element analysis to evaluate the stability, displacements of slopes and soil-slope stabilization interaction. The finite element method with shear strength reduction (SSR) technique is explained in Phase2D. This method is effective for the prediction of the stability of slope. Based on numerical comparisons between the limit equilibrium methods and finite element method, it is suggested that the finite element method with SSR technique is a reliable and maybe unique approach to evaluate the slope stability. The paper also took into account effectiveness of the large rain and seismic load. The results of the numerical analysis are consistent with the observed slope surface evidence.



2014 ◽  
Vol 472 ◽  
pp. 671-676
Author(s):  
Bo Tao Liu ◽  
Yan Qi ◽  
Xiao Han ◽  
Shi Zeng Lv ◽  
Guo Feng Wang

Flange is the key part of the large vacuum container and its stiffness property affects the sealing effect and the stability of the container. Large flange welding process will have a greater impact on its structural strength. In view of the traditional way of forming large vacuum container flange has problems that processing and manufacturing are difficult, more material consumption, and poor stiffness, a new type of flange structure was support. The new design has hollow structure and the welding process of cover flange was simulated through the finite element method. After that, the stress and the deformation were analyzed and then the proper welding scheme was optimized.



2010 ◽  
Vol 44-47 ◽  
pp. 2031-2035
Author(s):  
Qian Wang ◽  
Lei Shi ◽  
Zhe Zhang

Tong-Tai Bridge is a special-shape arch bridge with arch obliquely cross the curved beam. In order to validate the theoretical solutions and ensure the structure safety, model test is discussed. In this paper, the structural design, fabrication procedures and test method of the model are presented. Meanwhile, the finite element method is applied to analyses this special structure. Some experience of the structure construction is obtained during the practice process and the experimental results achieved are satisfactory.



2011 ◽  
Vol 189-193 ◽  
pp. 2153-2160
Author(s):  
Yu Wen Sun ◽  
Chuan Tai Zhang ◽  
Qiang Guo

Optimal fixture involves fixture layout and clamping force determination. It is critical to ensure the machining accuracy of workpiece. In this paper, the clamping process is analyzed with the consideration of cutting forces and frictions using the finite element method. Then the fixture layout and clamping force are optimized by minimizing the workpiece deformation via a Genetic Algorithm (GA). Subsequently, linear programming method is used to estimate the stability of workpiece. It is shown through an example that the proposed method is proved to be efficient. The optimization result is not only far superior to the experiential one, but also the total optimization time can be reduced significantly.



2011 ◽  
Vol 335-336 ◽  
pp. 281-284 ◽  
Author(s):  
Chang Hao Wang ◽  
Jing Tian ◽  
Xiang Lu

According to the finite element method, this article has established the FML’s finite element model. By comparing to the test data and studying of the tensile behavior of FML, it has verified valid of the model. When the aluminum layer yields under the tensile load, the composite layer has the most tensile load. And the model has been developed to predict the stability influenced by the rib’s height.



2018 ◽  
Vol 10 (10) ◽  
pp. 168781401880347 ◽  
Author(s):  
Ji Zhou ◽  
Duan-Wei Shi ◽  
Zhi-Lin Sun ◽  
Tao Bi ◽  
Xiong-Hao Cheng ◽  
...  

Taking the hydraulic cylinder for the miter gate in Dateng Gorges Water Conservancy Project as the object, a large slenderness ratio test hydraulic cylinder was designed based on the similarity theory. The buckling analysis of the test hydraulic cylinder was carried out by the finite element method, considering the friction at the supports, the misalignments between piston rod and cylinder tube, and gravity. The results indicate that the stability safety factor is 10.55. A buckling experimental system was established, and the buckling stability of the test hydraulic cylinder was tested for the sliding bearing support and the rolling bearing support at the piston-rod end, respectively. The stability safety factor is over 9.01 and 6.82 relevantly. The similarities and differences among the results of the finite element method, experimental method, NB/T 35020-2013, and two-sections pressure bar method were analyzed. Experimental and analytical results clearly show that the friction at the supports is a key factor in determining the magnitude of the stability safety for large slenderness ratio horizontal hydraulic hoist and utilizing the sliding bearing can effectively improve the stability safety factor.



2017 ◽  
Vol 11 (1) ◽  
pp. 14-19
Author(s):  
Ryszard Sygulski ◽  
Michał Guminiak ◽  
Łukasz Polus

Abstract The stability of the element of a steel welded girder subjected to bending and shear forces is considered. The considered element is a rectangular plate supported on boundary. The type of a plate boundary conditions depend on the types (thickness) of the stiffeners. Considered plate is loaded by in-plane forces causing bending and shear effects. The Finite Element Method was applied to carry out the analysis. Additionally the Boundary Element Method in terms of boundary-domain integral equation was applied to evaluate the critical shear loading.



1980 ◽  
Vol 17 (1) ◽  
pp. 44-53 ◽  
Author(s):  
Jean Lafleur ◽  
Guy Lefebvre

Slope stability analyses in terms of effective stresses are most often based on hypothetical conditions of pore pressure. It is generally assumed that the flow occurs parallel to the slope or even that the conditions are hydrostatic. In fact, in situ measurements tend to show that the real situation could significantly deviate from these approximations due to geologic conditions. The influence of various geometric and stratigraphic factors on the groundwater regime and on the stability of slopes was studied with the finite-element method. To illustrate the parametric study, experimental evaluations of the flow patterns are presented at four sites. The stratigraphy and permeability measurements combined with the finite-element method enabled a complete flow net to be drawn and although some hypotheses had to be formulated with regards to the underlying aquifer recharge or permeability anisotropy, reasonable agreement was found between simulated and measured piezometric heads.



Sign in / Sign up

Export Citation Format

Share Document