scholarly journals SYMMETRIC AND ASYMMETRIC RAMSEY PROPERTIES IN RANDOM HYPERGRAPHS

2017 ◽  
Vol 5 ◽  
Author(s):  
LUCA GUGELMANN ◽  
RAJKO NENADOV ◽  
YURY PERSON ◽  
NEMANJA ŠKORIĆ ◽  
ANGELIKA STEGER ◽  
...  

A celebrated result of Rödl and Ruciński states that for every graph $F$, which is not a forest of stars and paths of length 3, and fixed number of colours $r\geqslant 2$ there exist positive constants $c,C$ such that for $p\leqslant cn^{-1/m_{2}(F)}$ the probability that every colouring of the edges of the random graph $G(n,p)$ contains a monochromatic copy of $F$ is $o(1)$ (the ‘0-statement’), while for $p\geqslant Cn^{-1/m_{2}(F)}$ it is $1-o(1)$ (the ‘1-statement’). Here $m_{2}(F)$ denotes the 2-density of $F$. On the other hand, the case where $F$ is a forest of stars has a coarse threshold which is determined by the appearance of a certain small subgraph in $G(n,p)$. Recently, the natural extension of the 1-statement of this theorem to $k$-uniform hypergraphs was proved by Conlon and Gowers and, independently, by Friedgut, Rödl and Schacht. In particular, they showed an upper bound of order $n^{-1/m_{k}(F)}$ for the 1-statement, where $m_{k}(F)$ denotes the $k$-density of $F$. Similarly as in the graph case, it is known that the threshold for star-like hypergraphs is given by the appearance of small subgraphs. In this paper we show that another type of threshold exists if $k\geqslant 4$: there are $k$-uniform hypergraphs for which the threshold is determined by the asymmetric Ramsey problem in which a different hypergraph has to be avoided in each colour class. Along the way we obtain a general bound on the 1-statement for asymmetric Ramsey properties in random hypergraphs. This extends the work of Kohayakawa and Kreuter, and of Kohayakawa, Schacht and Spöhel who showed a similar result in the graph case. We prove the corresponding 0-statement for hypergraphs satisfying certain balancedness conditions.

10.37236/7712 ◽  
2019 ◽  
Vol 26 (3) ◽  
Author(s):  
Oliver Cooley ◽  
Mihyun Kang ◽  
Christoph Koch

We consider connected components in $k$-uniform hypergraphs for the following notion of connectedness: given integers $k\ge 2$ and $1\le j \le k-1$, two $j$-sets (of vertices) lie in the same $j$-component if there is a sequence of edges from one to the other such that consecutive edges intersect in at least $j$ vertices.We prove that certain collections of $j$-sets constructed during a breadth-first search process on $j$-components in a random $k$-uniform hypergraph are reasonably regularly distributed with high probability. We use this property to provide a short proof of the asymptotic size of the giant $j$-component shortly after it appears.


2018 ◽  
Vol 19 (2) ◽  
pp. 421-450 ◽  
Author(s):  
Stephen Scully

Let $q$ be an anisotropic quadratic form defined over a general field $F$. In this article, we formulate a new upper bound for the isotropy index of $q$ after scalar extension to the function field of an arbitrary quadric. On the one hand, this bound offers a refinement of an important bound established in earlier work of Karpenko–Merkurjev and Totaro; on the other hand, it is a direct generalization of Karpenko’s theorem on the possible values of the first higher isotropy index. We prove its validity in two key cases: (i) the case where $\text{char}(F)\neq 2$, and (ii) the case where $\text{char}(F)=2$ and $q$ is quasilinear (i.e., diagonalizable). The two cases are treated separately using completely different approaches, the first being algebraic–geometric, and the second being purely algebraic.


2018 ◽  
Vol 17 (10) ◽  
pp. 1850184 ◽  
Author(s):  
Ramesh Prasad Panda ◽  
K. V. Krishna

The power graph of a group [Formula: see text] is the graph whose vertex set is [Formula: see text] and two distinct vertices are adjacent if one is a power of the other. This paper investigates the minimal separating sets of power graphs of finite groups. For power graphs of finite cyclic groups, certain minimal separating sets are obtained. Consequently, a sharp upper bound for their connectivity is supplied. Further, the components of proper power graphs of [Formula: see text]-groups are studied. In particular, the number of components of that of abelian [Formula: see text]-groups are determined.


1991 ◽  
Vol 113 (4) ◽  
pp. 425-429 ◽  
Author(s):  
T. Hisatsune ◽  
T. Tabata ◽  
S. Masaki

Axisymmetric deformation of anisotropic porous materials caused by geometry of pores or by distribution of pores is analyzed. Two models of the materials are proposed: one consists of spherical cells each of which has a concentric ellipsoidal pore; and the other consists of ellipsoidal cells each of which has a concentric spherical pore. The velocity field in the matrix is assumed and the upper bound approach is attempted. Yield criteria are expressed as ellipses on the σm σ3 plane which are longer in longitudinal direction with increasing anisotropy and smaller with increasing volume fraction of the pore. Furthermore, the axes rotate about the origin at an angle α from the σm-axis, while the axis for isotropic porous materials is on the σm-axis.


2018 ◽  
Vol 167 (02) ◽  
pp. 229-247
Author(s):  
TAKAO SATOH

AbstractIn this paper, we study “the ring of component functions” of SL(2, C)-representations of free abelian groups. This is a subsequent research of our previous work [11] for free groups. We introduce some descending filtration of the ring, and determine the structure of its graded quotients.Then we give two applications. In [30], we constructed the generalized Johnson homomorphisms. We give an upper bound on their images with the graded quotients. The other application is to construct a certain crossed homomorphisms of the automorphism groups of free groups. We show that our crossed homomorphism induces Morita's 1-cocycle defined in [22]. In other words, we give another construction of Morita's 1-cocyle with the SL(2, C)-representations of the free abelian group.


2015 ◽  
Vol 25 (6) ◽  
pp. 870-908 ◽  
Author(s):  
NIKOLAOS FOUNTOULAKIS ◽  
MEGHA KHOSLA ◽  
KONSTANTINOS PANAGIOTOU

Ak-uniform hypergraphH= (V, E) is called ℓ-orientable if there is an assignment of each edgee∈Eto one of its verticesv∈esuch that no vertex is assigned more than ℓ edges. LetHn,m,kbe a hypergraph, drawn uniformly at random from the set of allk-uniform hypergraphs withnvertices andmedges. In this paper we establish the threshold for the ℓ-orientability ofHn,m,kfor allk⩾ 3 and ℓ ⩾ 2, that is, we determine a critical quantityc*k,ℓsuch that with probability 1 −o(1) the graphHn,cn,khas an ℓ-orientation ifc<c*k,ℓ, but fails to do so ifc>c*k,ℓ.Our result has various applications, including sharp load thresholds for cuckoo hashing, load balancing with guaranteed maximum load, and massive parallel access to hard disk arrays.


2013 ◽  
Author(s):  
Franco Masciandaro

The principal aim of this study is to participate in the current renewed discourse on the meaning of friendship, initiated in 1994 by the French philosopher Jacques Derrida with his Politics of Friendship, by combining the philosophical method of inquiry with the hermeneutical approach to poetic representations of friendship in the Iliad, the Divine Comedy, and the Decameron. It examines friendship not only as the unique love between two persons based on familiarity and proximity, but as the love for the one who is far away, the stranger, for this is a natural extension of the implicit love of the distant other, of the other-as-stranger – what Emmanuel Levinas has called "the infinity of the Other" – which is concealed in our friend, and which, in the words of Maurice Blanchot, puts us "authentically in relation" with him or her.


2020 ◽  
Vol 37 (06) ◽  
pp. 2050034
Author(s):  
Ali Reza Sepasian ◽  
Javad Tayyebi

This paper studies two types of reverse 1-center problems under uniform linear cost function where edge lengths are allowed to reduce. In the first type, the aim is that the objective value is bounded by a prescribed fixed value [Formula: see text] at minimum cost. The aim of the other is to improve the objective value as much as possible within a given budget. An algorithm based on dynamic programming is proposed to solve the first problem in linear time. Then, this algorithm is applied as a subroutine to design an algorithm to solve the second type of the problem in [Formula: see text] time in which [Formula: see text] is a fixed number dependent on the problem parameters. Under the similarity assumption, this algorithm has a better complexity than the Nguyen algorithm (2013) with quadratic-time complexity. Some numerical experiments are conducted to validate this fact in practice.


2020 ◽  
Vol 29 (6) ◽  
pp. 830-867 ◽  
Author(s):  
Shagnik Das ◽  
Andrew Treglown

AbstractGiven graphs H1, H2, a graph G is (H1, H2) -Ramsey if, for every colouring of the edges of G with red and blue, there is a red copy of H1 or a blue copy of H2. In this paper we investigate Ramsey questions in the setting of randomly perturbed graphs. This is a random graph model introduced by Bohman, Frieze and Martin [8] in which one starts with a dense graph and then adds a given number of random edges to it. The study of Ramsey properties of randomly perturbed graphs was initiated by Krivelevich, Sudakov and Tetali [30] in 2006; they determined how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (K3, Kt) -Ramsey (for t ≽ 3). They also raised the question of generalizing this result to pairs of graphs other than (K3, Kt). We make significant progress on this question, giving a precise solution in the case when H1 = Ks and H2 = Kt where s, t ≽ 5. Although we again show that one requires polynomially fewer edges than in the purely random graph, our result shows that the problem in this case is quite different to the (K3, Kt) -Ramsey question. Moreover, we give bounds for the corresponding (K4, Kt) -Ramsey question; together with a construction of Powierski [37] this resolves the (K4, K4) -Ramsey problem.We also give a precise solution to the analogous question in the case when both H1 = Cs and H2 = Ct are cycles. Additionally we consider the corresponding multicolour problem. Our final result gives another generalization of the Krivelevich, Sudakov and Tetali [30] result. Specifically, we determine how many random edges must be added to a dense graph to ensure the resulting graph is with high probability (Cs, Kt) -Ramsey (for odd s ≽ 5 and t ≽ 4).To prove our results we combine a mixture of approaches, employing the container method, the regularity method as well as dependent random choice, and apply robust extensions of recent asymmetric random Ramsey results.


2019 ◽  
Vol 30 (08) ◽  
pp. 1950052
Author(s):  
Feng Hu ◽  
Jin-Li Guo ◽  
Fa-Xu Li ◽  
Hai-Xing Zhao

Hypernetworks are ubiquitous in real-world systems. They provide a powerful means of accurately depicting networks of different types of entity and will attract more attention from researchers in the future. Most previous hypernetwork research has been focused on the application and modeling of uniform hypernetworks, which are based on uniform hypergraphs. However, random hypernetworks are generally more common, therefore, it is useful to investigate the evolution mechanisms of random hypernetworks. In this paper, we construct three dynamic evolutional models of hypernetworks, namely the equal-probability random hypernetwork model, the Poisson-probability random hypernetwork model and the certain-probability random hypernetwork model. Furthermore, we analyze the hyperdegree distributions of the three models with mean-field theory, and we simulate each model numerically with different parameter values. The simulation results agree well with the results of our theoretical analysis, and the findings indicate that our models could help understand the structure and evolution mechanisms of real systems.


Sign in / Sign up

Export Citation Format

Share Document