Microsatellite genetic diversity and fine-scale spatial genetic structure within a natural stand ofLiriodendron chinense(Magnoliaceae) in Lanmushan, Duyun City, Guizhou Province

2014 ◽  
Vol 22 (3) ◽  
pp. 375
Author(s):  
Yang Aihong ◽  
Zhang Jinju ◽  
Tian Hua ◽  
Yao Xiaohong ◽  
Huang Hongwen
Forests ◽  
2018 ◽  
Vol 9 (10) ◽  
pp. 622 ◽  
Author(s):  
Andrea Piotti ◽  
Matteo Garbarino ◽  
Camilla Avanzi ◽  
Roberta Berretti ◽  
Renzo Motta ◽  
...  

The tandem analysis of dendrochronological and genetic data is piquing forest ecologists’ interest and represents a promising approach for studying the temporal development of genetic structure in forest tree populations. Such multidisciplinary approach can help elucidate to what extent different management practices have impacted the fine-scale spatial genetic structure of forest stands through time. In this study, we jointly analysed spatial, age and genetic data from three differently managed Norway spruce permanent plots to assess: (1) possible differences among plots in the spatial distribution of individuals and their genetic structure due to different management practices, and (2) whether modifications in the age structure influenced the fine-scale spatial genetic structure within each permanent plot. With these aims, we genetically characterized at five nuclear microsatellite markers a large subset (328) of all the trees for which spatial and age data were collected (1472). We found that different management practices determined a similar spatial structure in terms of trees’ ages (r < 25 m in all plots) and neutral genetic diversity (Sp ranging from 0.002 to 0.004). Hot spots and cold spots of trees’ age were not statistically different in terms of genetic diversity, and trees’ age was not statistically different among the genetic clusters detected. On the other hand, the spatial distribution of individuals was significantly clustered up to 22 m only in the wooded pasture plot. Our main findings show that forest land use and management can indeed determine markedly different spatial layouts of Norway spruce individuals but do not produce strong distortions in the spatial structure of age and genetic parameters.


2020 ◽  
Vol 98 (5) ◽  
pp. 317-330
Author(s):  
Samuel Deakin ◽  
Jamieson C. Gorrell ◽  
Jeffery Kneteman ◽  
David S. Hik ◽  
Richard M. Jobin ◽  
...  

The Canadian Rocky Mountains are one of the few places on Earth where the spatial genetic structure of wide-ranging species has been relatively unaffected by anthropogenic disturbance. We characterized the spatial genetic structure of Rocky Mountain bighorn sheep (Ovis canadensis canadensis Shaw, 1804) in the northern portion of their range. Using microsatellites from 1495 individuals and mitochondrial DNA sequences from 188 individuals, we examined both broad- and fine-scale spatial genetic structure, assessed sex-biased gene flow within the northern portion of the species range, and identified geographic patterns of genetic diversity. We found that broad-scale spatial genetic structure was consistent with barriers to movement created by major river valleys. The fine-scale spatial genetic structure was characterized by a strong isolation-by-distance pattern, and analysis of neighborhood size using spatial autocorrelation indicated gene flow frequently occurred over distances of up to 100 km. However, analysis of sex-specific spatial autocorrelation and analysis of mitochondrial haplotype distributions failed to detect any evidence of sex-biased gene flow. Finally, our analyses reveal decreasing genetic diversity with increasing latitude, consistent with patterns of post-glacial recolonization of the Rocky Mountains.


2021 ◽  
Author(s):  
Enikő I. Major ◽  
Mária Höhn ◽  
Camilla Avanzi ◽  
Bruno Fady ◽  
Katrin Heer ◽  
...  

AbstractVariation in genetic diversity across species ranges has long been recognized as highly informative for assessing populations’ resilience and adaptive potential. The spatial distribution of genetic diversity, referred to as fine-scale spatial genetic structure (FSGS), also carries information about recent demographic changes, yet it has rarely been connected to range scale processes. We studied eight silver fir (Abies alba Mill.) population pairs (sites), growing at high and low elevations, representative of the main genetic lineages of the species. A total of 1368 adult trees and 540 seedlings were genotyped using 137 and 116 single nucleotide polymorphisms (SNPs), respectively. Sites revealed a clear east-west isolation-by-distance pattern consistent with the post-glacial colonization history of the species. Genetic differentiation among sites (FCT=0.148) was an order of magnitude greater than between elevations within sites (FSC=0.031), nevertheless high elevation populations consistently exhibited a stronger FSGS. Structural equation modeling revealed that elevation and, to a lesser extent, post-glacial colonization history, but not climatic and habitat variables, were the best predictors of FGSG across populations. These results may suggest that high elevation habitats have been colonized more recently across the species range. Additionally, paternity analysis revealed a high reproductive skew among adults and a stronger FSGS in seedlings than in adults, suggesting that FSGS may conserve the signature of demographic changes for several generations. Our results emphasize that spatial patterns of genetic diversity within populations provide complementary information about demographic history and could be used for defining conservation priorities.


2014 ◽  
Vol 300 (7) ◽  
pp. 1671-1681 ◽  
Author(s):  
Rosane Garcia Collevatti ◽  
Raquel Estolano ◽  
Marina Lopes Ribeiro ◽  
Suelen Gonçalves Rabelo ◽  
Elizangela J. Lima ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document