Genetic Diversity of Brassica juncea from Western China

2008 ◽  
Vol 34 (5) ◽  
pp. 754-763 ◽  
Author(s):  
Ai-Xia XU
PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e8038
Author(s):  
Yanli Xiong ◽  
Wenhui Liu ◽  
Yi Xiong ◽  
Qingqing Yu ◽  
Xiao Ma ◽  
...  

Hosting unique and important plant germplasms, the Qinghai-Tibet Plateau (QTP), as the third pole of the world, and Xinjiang, located in the centre of the Eurasian continent, are major distribution areas of perennial Triticeae grasses, especially the widespread Elymus species. Elymus excelsus Turcz. ex Griseb, a perennial forage grass with strong tolerance to environmental stresses, such as drought, cold and soil impoverishment, can be appropriately used for grassland establishment due to its high seed production. To provide basic information for collection, breeding strategies and utilization of E. excelsus germplasm, microsatellite markers (SSR) were employed in the present study to determine the genetic variation and population structure of 25 wild accessions of E. excelsus from Xinjiang (XJC) and the QTP, including Sichuan (SCC) and Gansu (GSC) of western China. Based on the 159 polymorphic bands amplified by 35 primer pairs developed from three related species, the average values of the polymorphic information content (PIC), marker index (MI), resolving power (Rp), Nei’s genetic diversity (H) and Shannon’s diversity index (I) of each pair of primers were 0.289, 1.348, 1.897, 0.301 and 0.459, respectively, validating that these SSR markers can also be used for the evaluation of genetic diversity of E. excelsus germplasms, and demonstrating the superior versatility of EST-SSR vs. G-SSR. We found a relatively moderate differentiation (Fst = 0.151) among the XJC, SCC and GSC geo-groups, and it is worth noting that, the intra-group genetic diversity of the SCC group (He = 0.197) was greater than that of the GSC (He = 0.176) and XJC (He = 0.148) groups. Both the Unweighted Pair Group Method with Arithmetic (UPGMA) clustering and principal coordinates analysis (PCoA) divided the 25 accessions into three groups, whereas the Bayesian STRUCTURE analysis suggested that E. excelsus accessions fell into four main clusters. Besides, this study suggested that geographical distance and environmental variables (annual mean precipitation and average precipitation in growing seasons), especially for QTP accessions, should be combined to explain the population genetic differentiation among the divergent geographical regions. These data provided comprehensive information about these valuable E. excelsus germplasm resources for the protection and collection of germplasms and for breeding strategies in areas of Xinjiang and QTP in western China.


2019 ◽  
Vol 67 (7) ◽  
pp. 571
Author(s):  
Zhihao Su ◽  
Liuqiang Wang ◽  
Li Zhuo ◽  
Xiaolong Jiang ◽  
Wenjun Li

Tamarix taklamakanensis is an endangered shrub endemic to the Tarim Basin and adjacent Kumtag Desert in north-western China. Here, we used two chloroplast DNA sequences, namely, psbA-trnH and trnS-trnG, to examine the genetic diversity patterns of this species across its entire covered range. A total of nineteen haplotypes were detected. The total gene diversity within the species is high. Genetic variation mainly occurred among populations, SAMOVA groups, and geographic regions. The test for isolation-by-distance showed a significant correlation between genetic and geographical distances, and the genetic landscape shape analysis showed a significant genetic divergence between the Tarim Basin and Kumtag Desert. T. taklamakanensis likely had a potential geographic range during the Last Glacial Maximum period that was much smaller than the present range predicted by ecological niche modelling. The cold and dry climate during the glacial periods of the Quaternary might be a driver of the genetic isolation and divergence detected within T. taklamakanensis, and climatic oscillations might account for the habitat fragmentation of the species. Within the inner of the basin, populations have a higher level of genetic diversity and harbor most of this genetic diversity, thus a nature reserves should be set up in this area for the in situ conservation. In addition, five genetically distinct groups within T. taklamakanensis should be treated as different management units (MUs) when implementing conservation activities.


2012 ◽  
Vol 45 ◽  
pp. 41-48 ◽  
Author(s):  
Qi-Lun Yao ◽  
Fa-Bo Chen ◽  
Ping Fang ◽  
Guang-Fan Zhou ◽  
Yong-Hong Fan ◽  
...  

2013 ◽  
Vol 36 (4) ◽  
pp. 419-427 ◽  
Author(s):  
K. H. Singh ◽  
R. Shakya ◽  
A. K. Thakur ◽  
D. K. Chauhan ◽  
J. S. Chauhan

Author(s):  
Vivek K. Singh ◽  
Ram Avtar ◽  
Mahavir . ◽  
Nisha Kumari ◽  
Manjeet . ◽  
...  

Background: Rapeseed-mustard is one of the most important oilseed crops in India, however, its genetic diversity is barely known. A better understanding on this topic is essential for the proper utilization of genotypes in crop improvement. Methods: Present study was carried out to determine the genetic diversity among 95 diverse genotypes of Brassica juncea (L.) in paired rows of 4 m length with a spacing of 30 x 10-15 cm (row × plant). Data were recorded on 11 different agro-morphological characters. Result: All the 95 genotypes were grouped into five distinct clusters based on Manhattan dissimilarity coefficients. Amongst the five clusters, cluster V and IV had the maximum number of genotypes (35 and 23 genotypes respectively) and cluster II with least number of genotypes (three). The Manhattan dissimilarity coefficients ranged from 0.741 to 8.299. Based on the genetic dissimilarity matrix, the maximum dissimilarity (8.299) was observed between the genotypes, DRMRIJ-15-133 and M 62. Cluster III recorded for medium plant height with medium early maturity and cluster I, had maximum mean values for most of the agro-morphological traits. The present work indicated the presence of high genetic diversity among genotypes, which can be used in future breeding programmes for developing mustard cultivars and germplasm management purposes.


Author(s):  
Kanchan Verma ◽  
Manoj Kumar Tripathi ◽  
Sushma Tiwari ◽  
Niraj Tripathi

Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1511
Author(s):  
Xue Gong ◽  
Aihong Yang ◽  
Zhaoxiang Wu ◽  
Caihui Chen ◽  
Huihu Li ◽  
...  

Cinnamomum camphora (L.) J.Presl is a representative tree species of evergreen broad-leafed forests in East Asia and has exceptionally high economic, ornamental, and ecological value. However, the excessive exploitation and utilization of C. camphora trees have resulted in the shrinking of wild population sizes and rare germplasm resources. In this study, we characterized 171 C. camphora trees from 39 natural populations distributed throughout the whole of China and one Japanese population. We investigated genetic diversity and population structure using genome-wide single-nucleotide polymorphism (SNP) identified by genotyping by sequencing (GBS) technology. The results showed the genetic diversity of the C. camphora populations from western China > central China > eastern China. Moreover, the Japanese population showed the highest diversity among all populations. The molecular variance analysis showed 92.03% of the genetic variation within populations. The average pairwise FST was 0.099, and gene flow Nm was 2.718, suggesting a low genetic differentiation among populations. Based on the genetic clustering analysis, the 40 C. camphora populations clustered into three major groups: Western China, Central China, and Eastern China + Japan. Eastern China’s population had the closest genetic relationship with the Japanese population, suggesting possible gene exchange between the two adjacent areas. This study furthers our understanding of the genetic diversity and genetic structure of C. camphora in East Asia and provides genetic tools for developing strategies of C. camphora germplasm utilization.


Sign in / Sign up

Export Citation Format

Share Document