Effects of 1,2,4-Trichlorobenzene on Photosynthetic Characteristics of Flag Leaf during Grain Filling Stage and Grain Yield of Two Rice Cultivars

2016 ◽  
Vol 42 (2) ◽  
pp. 255
Author(s):  
Yu LI ◽  
Lu CHEN ◽  
Kai YAN ◽  
Ying SUN ◽  
Yi-Fan YIN ◽  
...  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Yang Liu ◽  
Xinguang Zhu ◽  
Xiaoe He ◽  
Chao Li ◽  
Tiangen Chang ◽  
...  

Abstract Topdressing at panicle differentiation (PF) according to soil fertility and regularity of rice nutrient absorption is an important agronomic practice used in cultivation of rice cultivars with a long growth duration. We studied the impacts of timing of nitrogen fertilizer application during PF on photosynthesis and yield-related agronomic traits in ‘Y-Liang-You 900’ and ‘Y-Liang-You 6’, which are representative rice cultivars with a long growth duration. Data for two years showed that timing of topdressing application during PF affected panicles per unit area, percentage grain set, spikelets per panicle, and leaf photosynthetic traits during the grain-filling period. Topdressing at the initial stage of flag-leaf extension resulted in higher grain yield (typically by 10.55–19.95%) than in plants without topdressing. Grain yield was significantly correlated with flag leaf photosynthetic rate and leaf SPAD value (r = 0.5640 and r = 0.5589, respectively; p < 0.01) at an advanced grain-filling stage (30 days after heading). Surprisingly, grain yield was not correlated with carbohydrate remobilization from the stem and sheath. For rice cultivars with a long growth duration, nitrogen-fertilizer topdressing must be applied at the initial stage of flag-leaf extension to delay leaf senescence during the grain-filling stage and realize the enhanced yield potential.


2021 ◽  
Vol 8 (03) ◽  
pp. 154-160
Author(s):  
Tran Loc Thuy ◽  
Tran Ngoc Thach ◽  
Tran Thi Thanh Xa ◽  
Chau Thanh Nha ◽  
Vo Thi Tra My ◽  
...  

Environmental stress trigger a variety of rice plant response, ranging from alters seed set, grain yield and grain quality during flowering and grain filling stage.  Efforts are required to improve our understanding of the impact of heat stress on rice production, which are essential strategies in rice cultivation. This article investigated the seed set, yield components and grain yield of Vietnamese rice cultivars (Indica germplasm) under high temperature environment during the flowering and grain filling stage. Six rice cultivars, including popular cultivars and new cultivars of Cuu Long Delta Rice Research Institute, and one popular extraneous cultivar with differences in maturing time, were grown in pots at high temperature (HT) and natural temperature condition as control (CT). All rice cultivars were subjected to the high temperature starting from the heading stage to the harvest maturity, applied by greenhouse effect. The greenhouse has about 25 cm window opening on 3 sides for air ventilation. The seed set rate of the heat-sensitive rice genotypes decreased significantly under HT, leading to a significant reduction in grain yield. The lowest seed set was recorded in “OM4900” (44.3%) and “OM18” (39.9%) under high temperature environment. The lower yield in all rice cultivars at an elevated temperature resulted in a dramatic decrease of filled grains and contributed to a loss of 1000-grain weight. ‘“OM892” is a potential rice cultivar for heat tolerant breeding program due to the seed set percentage was above 80% in both HT and CT conditions. High temperature during the grain filling stage resulted in a decreased amylose and increased chalkiness for all OM cultivars.


2016 ◽  
Vol 36 (5) ◽  
Author(s):  
李玉 LI Yu ◽  
丁焕新 DING Huanxin ◽  
丁秀文 DING Xiuwen ◽  
殷毅凡 YIN Yifan ◽  
孙影 SUN Ying ◽  
...  

Biology ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 42
Author(s):  
Cong Zhang ◽  
Bangyou Zheng ◽  
Yong He

Improving plant net photosynthetic rates and accelerating water-soluble carbohydrate accumulation play an important role in increasing the carbon sources for yield formation of wheat (Triticum aestivum L.). Understanding and quantify the contribution of these traits to grain yield can provide a pathway towards increasing the yield potential of wheat. The objective of this study was to identify kernel weight gap for improving grain yield in 15 winter wheat genotypes grown in Shandong Province, China. A cluster analysis was conducted to classify the 15 wheat genotypes into high yielding (HY) and low yielding (LY) groups based on their performance in grain yield, harvest index, photosynthetic rate, kernels per square meter, and spikes per square meter from two years of field testing. While the grain yield was significantly higher in the HY group, its thousand kernel weight (TKW) was 8.8% lower than that of the LY group (p < 0.05). A structural equation model revealed that 83% of the total variation in grain yield for the HY group could be mainly explained by TKW, the flag leaf photosynthesis rate at the grain filling stage (Pn75), and flag leaf water-soluble carbohydrate content (WSC) at grain filling stage. Their effect values on yield were 0.579, 0.759, and 0.444, respectively. Our results suggest that increase of flag leaf photosynthesis and WSC could improve the TKW, and thus benefit for developing high yielding wheat cultivars.


Author(s):  
Adnan Al-ghawry ◽  
Attila Yazar ◽  
Mustafa Unlu ◽  
Celaleddin Barutcular ◽  
Yeşim Bozkurt Çolak

Abstract A field experiment was carried out to evaluate the effect of different conventional and supplemental irrigation strategies on leaf stomatal conductance (gs) and chlorophyll content (SPAD) yield and irrigation water productivity (IWP) of wheat using sprinkler line source in 2014 and 2015 in the Mediterranean region. The irrigation strategies were, supplemental irrigation (SI) during flowering and grain filling (SIFG), SI during grain filling (SIG), SI during flowering (SIF) and conventional irrigation (CI). These strategies were conducted under four irrigation levels 25, 50, 75, 100% and a rain-fed as control. The results indicated that CI100 and CI75 produced the greater grain yield and IWP, respectively. CI100 resulted in the increased chlorophyll content by 8.8% over rain-fed. The results confirmed that the SPAD and stomatal conductance values were not equally sensitive to water stress during growth stages. The wheat crop suffered a greater SPAD and gs reductions when the water stress occurred during the grain filling stage (SIF strategy) compared to other strategies, which means that the grain filling stage is more sensitive and effective to decrease the yield of winter wheat. The higher grain yields were achieved when the seasonal mean gs reached 207.4 mmol/m2s in CI and 169.2 mmol/m2s in SI, and the stomatal closure responded well to low, moderate and severe drought treatments. The leaf stomatal conductance (gs) was correlated linearly with grain yield. These relations could be used as a physiological indicator to evaluate water stress effect on the growth and productivity of wheat.


2019 ◽  
Vol 11 (2) ◽  
pp. 277-282
Author(s):  
Abolfazl NASSERI ◽  
Hossein Ali FALLAHI ◽  
Vahid REZAVERDINEJAD

Single or double irrigations of wheat are necessary to obtain optimum yield in a humid region with insufficient rainfall for agricultural production. Therefore, the hereby study was conducted with the aim of analysis of water productivity under rainfed and (single or double) irrigated conditions in a Mediterranean environment during 11 cropping years. There were investigated four treatments for irrigation management of wheat viz. rainfed without irrigation (T0), single irrigation at the flowering stage (T1), single irrigation at the grain filling stage (T2) and double irrigation at the flowering and grain filling stages (T3). Results revealed that the highest water productivity and optimum yield were acquired with single irrigation at the grain filling stage. This scheme caused an increase of 20% in grain yield relative to yield from rainfed condition. Rainfall, grain yield and water productivity of rainfed wheat were analyzed over 11 years and averaged 3,614 m3 ha-1, 1,970 kg ha-1 and 0.63 kg m-3, respectively. Results also showed that single or double irrigation had a high compensation effect on yield loss from water stress. Irrigation water productivity (1.31 kg m-3), water productivity (0.68 kg m-3) and irrigation ratio (2.2) indices determined for the 11 years. Water productivity of rainfed wheat by single irrigation at grain filling stage increased as 10% during 11 years.


2021 ◽  
Vol 9 (6) ◽  
pp. 405-417
Author(s):  
Mganga Joshua Fimbo Kitilu

Rice is an important cereal and staple food crop in Tanzania, the rice production has not met the demand, mainly due to water shortage. Dissemination of New Rice for Africa (NERICA) has been in progress to improve production in upland rice ecosystem. A pot experiment was conducted in a split plot design at university farm to elucidate water uptake, water use efficiency and nitrogen uptakes for two NERICA cultivars (NERICA1 and 2) and two Japanese rice cultivars ( and ). Amount of transpired water was recorded every day until maturity. Nitrogen uptake at booting and maturity growth stage were compared between these cultivars. The results indicated that amount of water transpired was greater for NERICA cultivars in the period from booting to maturity, in particular, under the dry soil condition. All the cultivars showed similar slope of regression lines between amount of transpired water and dry matter production (Water use efficiency), Nitrogen concentration per unit weight was higher in NERICA rice than in Japanese rice during grain filling stage. These results indicate that NERICA’s rice cultivars have high productivity due to higher water and Nitrogen uptake during grain filling stage compared with the Japanese rice cultivars tested.


Sign in / Sign up

Export Citation Format

Share Document