Recent Advances in Nanocapsule: Types, Preparation Methods and Characterizatio

Author(s):  
Raja Sekharan Thenrajan

Nanocapsules are submicroscopic colloidal drug carrier systems consist of a liquid/solid core in which the drug, gene, protein, and other substances are incorporated into the interior cavity that is surrounded by a distinctive polymeric membrane. Polymers like collagen, albumin, and gelatin are mainly using polymers in nanocapsule formulations. Nanocapsules can serve as nano-sized drug carriers to achieve controlled release as well as efficient drug targeting. The process is used to improve the poor aqueous drug solubility, taste, stabilizing drugs by protecting the molecule from the environment, providing the desired pharmacokinetic profile, allowing controlled release, as well as facilitating oral administration. Capsules are generally prepared between the range of 100 and 1000 nm. Their release and degradation properties largely depend on the composition and the structure of the capsule walls. The dispersion stability of nanocapsules determined by the surfactant, nature of the outer coating. This review describes various facts of nanocapsule drug delivery systems in relation to the method of formulation, characterization, potential benefits and risks, and pharmaceutical applications in drug delivery.

Pharmaceutics ◽  
2019 ◽  
Vol 11 (12) ◽  
pp. 629 ◽  
Author(s):  
Paroma Chakravarty ◽  
Amin Famili ◽  
Karthik Nagapudi ◽  
Mohammad A. Al-Sayah

Micro- and nano-carrier formulations have been developed as drug delivery systems for active pharmaceutical ingredients (APIs) that suffer from poor physico-chemical, pharmacokinetic, and pharmacodynamic properties. Encapsulating the APIs in such systems can help improve their stability by protecting them from harsh conditions such as light, oxygen, temperature, pH, enzymes, and others. Consequently, the API’s dissolution rate and bioavailability are tremendously improved. Conventional techniques used in the production of these drug carrier formulations have several drawbacks, including thermal and chemical stability of the APIs, excessive use of organic solvents, high residual solvent levels, difficult particle size control and distributions, drug loading-related challenges, and time and energy consumption. This review illustrates how supercritical fluid (SCF) technologies can be superior in controlling the morphology of API particles and in the production of drug carriers due to SCF’s non-toxic, inert, economical, and environmentally friendly properties. The SCF’s advantages, benefits, and various preparation methods are discussed. Drug carrier formulations discussed in this review include microparticles, nanoparticles, polymeric membranes, aerogels, microporous foams, solid lipid nanoparticles, and liposomes.


2019 ◽  
Vol 7 (42) ◽  
pp. 6612-6622 ◽  
Author(s):  
Caixue Lin ◽  
Bin Chi ◽  
Chen Xu ◽  
Cheng Zhang ◽  
Feng Tian ◽  
...  

Multifunctional drug carriers for simultaneous imaging and drug delivery have emerged as an important new direction for the treatment of cancer.


Author(s):  
Samson O. Adeosun ◽  
Margaret O. Ilomuanya ◽  
Oluwashina P. Gbenebor ◽  
Modupeola O. Dada ◽  
Cletus C. Odili

A way to avoid or minimize the side effect that could result in drug delivery to cells with increased efficiency and performance in the health rehabilitation process is to use biocompatible and biodegradable drug carriers. These are essentially biomaterials that are metallic, ceramic, or polymeric in nature. The sources of these materials must be biological in its entire ramification. The classification, synthesis, processing, and the applications to which these materials are put are the essential components of having suitable target cell drug carriers. This chapter will be devoted to discussing biomaterials suitable as drug carrier for use in the health-related matters of rehabilitation.


Nanomaterials ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 1274 ◽  
Author(s):  
Wang ◽  
Zhao ◽  
Gao ◽  
Xu ◽  
Wang ◽  
...  

Multifunctional nanomaterials for bioprobe and drug carrier have drawn great attention for their applications in the early monitoring the progression and treatment of cancers. In this work, we have developed new multifunctional water-soluble NaLnF4@MOF-Ln nanocomposites with dual-mode luminescence, which is based on stokes luminescent mesoporous lanthanide metal–organic frameworks (MOFs-Y:Eu3+) and anti-stokes luminescent NaYF4:Tm3+/Yb3+ nanoparticles. The fluorescence mechanism and dynamics are investigated and the applications of these nanocomposites as bioprobes and drug carriers in the cancer imaging and treatment are explored. Our results demonstrate that these nanocomposites with the excellent two-color emission show great potential in drug delivery, cancer cell imaging, and treatment, which are attributed to the unique spatial structure and good biocompatibility characteristics of NaLnF4@MOF-Ln nanocomposites.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 694 ◽  
Author(s):  
Liang Ding ◽  
Xinxia Cui ◽  
Rui Jiang ◽  
Keya Zhou ◽  
Yalei Wen ◽  
...  

Liposomes are extensively used in drug delivery, while alginates are widely used in tissue engineering. However, liposomes are usually thermally unstable and drug-leaking when in liquids, while the drug carriers made of alginates show low loading capacities when used for drug delivery. Herein, we developed a type of thermo-responsible liposome–alginate composite hydrogel (TSPMAH) by grafting thermo-responsive liposomes onto alginates by using Ca2+ mediated bonding between the phosphatidic serine (PS) in the liposome membrane and the alginate. The temperature-sensitivity of the liposomes was actualized by using phospholipids comprising dipalmitoylphosphatidylcholine (DPPC) and PS and the liposomes were prepared by a thin-film dispersion method. The TSPMAH was then successfully prepared by bridge-linking the microcapsules onto the alginate hydrogel via PS-Ca2+-Carboxyl-alginate interaction. Characterizations of the TSPMAH were carried out using scanning electron microscopy, transform infrared spectroscopy, and laser scanning confocal microscopy, respectively. Their rheological property was also characterized by using a rheometer. Cytotoxicity evaluations of the TSPMAH showed that the composite hydrogel was biocompatible, safe, and non-toxic. Further, loading and thermos-inducible release of model drugs encapsulated by the TSPMAH as a drug carrier system was also studied by making protamine–siRNA complex-carrying TSPMAH drug carriers. Our results indicated that the TSPMAH described herein has great potentials to be further developed into an intelligent drug delivery system.


2017 ◽  
pp. 459-485
Author(s):  
Prabhakar Singh ◽  
Sudhakar Singh ◽  
Rajesh Kumar Kesharwani

In this pharma innovative world, there are more than 30 drug delivery systems. Today's due to lacking the target specificity, the present scenario about drug delivery is emphasizing towards targeted drug delivery systems. Erythrocytes are the most common type of blood cells travel thousands of miles from wide to narrow pathways to deliver oxygen, drugs and nutrient during their lifetime. Red blood cells have strong and targeted potential carrier capabilities for varieties of drugs. Drug-loaded carrier erythrocytes or resealed erythrocytes are promising for various passive and active targeting. Resealed erythrocyte have advantage over several drug carrier models like biocompatibility, biodegradability without toxic products, inert intracellular environment, entrapping potential for a variety of chemicals, protection of the organism against toxic effects of the drug, able to circulate throughout the body, ideal zero-order drug-release kinetics, no undesired immune response against encapsulated drug etc. Resealed erythrocytes are rapidly taken up by macrophages of the Reticuloendothelial System (RES) of the liver, lung, and spleen of the body and hence drugs also. Resealed erythrocytes method of drugs delivery is secure and effective for drugs targeting specially for a longer period of time. This chapter will explain the different method of drug loading for resealed erythrocytes, their characterization, and applications in various therapies and associated health benefits.


2021 ◽  
Vol 1 (1) ◽  
pp. 30-43
Author(s):  
Mostafa Yusefi ◽  
Kamyar Shameli

With the high demand of using nanotechnology, nanocellulose has become popular for different biomedical and anticancer applications. Cellulose, a nature gifted material and the most abundant organic polymer on earth, is systematically reviewed. Details of the mechanical and chemical structure of nanocellulose are explained, starting with preparation methods along with physiochemical properties and pH gradient to incorporate innovative polymeric drug delivery vehicles in anticancer applications. A myriad of research fields has introduced nanocellulose as an intriguing candidate for anticancer drug excipient and carrier in modern cancer therapy. Albeit, innovative nanocellulose-based drug carrier systems will be complicated for their commercial use in pharmacies. Of this, it is required to understand the preparation, properties, and potential drug conjugation of nanocellulose to improve its interactions with human tissues.


Soft Matter ◽  
2020 ◽  
Vol 16 (20) ◽  
pp. 4756-4766 ◽  
Author(s):  
Yi Wang ◽  
Zhen Li ◽  
Jie Ouyang ◽  
George Em Karniadakis

Thermoresponsive hydrogels have been studied intensively for creating smart drug carriers and controlled drug delivery.


Author(s):  
Prabhakar Singh ◽  
Sudhakar Singh ◽  
Rajesh Kumar Kesharwani

In this pharma innovative world, there are more than 30 drug delivery systems. Today's due to lacking the target specificity, the present scenario about drug delivery is emphasizing towards targeted drug delivery systems. Erythrocytes are the most common type of blood cells travel thousands of miles from wide to narrow pathways to deliver oxygen, drugs and nutrient during their lifetime. Red blood cells have strong and targeted potential carrier capabilities for varieties of drugs. Drug-loaded carrier erythrocytes or resealed erythrocytes are promising for various passive and active targeting. Resealed erythrocyte have advantage over several drug carrier models like biocompatibility, biodegradability without toxic products, inert intracellular environment, entrapping potential for a variety of chemicals, protection of the organism against toxic effects of the drug, able to circulate throughout the body, ideal zero-order drug-release kinetics, no undesired immune response against encapsulated drug etc. Resealed erythrocytes are rapidly taken up by macrophages of the Reticuloendothelial System (RES) of the liver, lung, and spleen of the body and hence drugs also. Resealed erythrocytes method of drugs delivery is secure and effective for drugs targeting specially for a longer period of time. This chapter will explain the different method of drug loading for resealed erythrocytes, their characterization, and applications in various therapies and associated health benefits.


Sign in / Sign up

Export Citation Format

Share Document