scholarly journals CRYPTOSOMES: A REVOLUTIONARY BREAKTHROUGH IN NOVEL DRUG DELIVERY

2019 ◽  
Vol 11 (1) ◽  
pp. 7 ◽  
Author(s):  
Aiswarya M. U. ◽  
Keerthana Raju ◽  
Revathy B. Menon ◽  
Lakshmi V. S. ◽  
Sreeja C. Nair

The vesicular drug delivery systems are promising approaches to overthrown the problems of drugs having lesser bioavailability and rapid elimination from the body. The four type of lipid based drug delivery systems are: solid-lipid particulate system, emulsion based system, solid lipid tablet and vesicular system. Cryptosomes, a novel emerging vesicular drug delivery system which can overcome the disadvantages associated with conventional drug delivery systems like high stability, increased bioavailability, sustained release, decreased elimination of rapidly metabolizable drugs etc. The word Cryptosome was orginated from Greek word ‘’Crypto’’ means hidden and ‘’Soma’’ means body. It is formed from the mixture of phospholipids like distearoyl phosphatidyl ethanolamine-polyethylene glycol (DSPE-PEG) with distearoylphosphatidylcholine. These entire information regarding its origin and formation is explained in Dinesh Kumar et al. Vesicular systems symbolizes the use of vesicles in the different fields as carrier system or additives. This review disclose various vesicular drug delivery system and point out the advancement of cryptosome in the world of drug delivery.This review would help researchers involved in the field of vesicular drug delivery.

2022 ◽  
Vol 24 (1) ◽  
pp. 48-60
Author(s):  
Avani K. Shewale ◽  
◽  
Akshay R. Yadav ◽  
Ashwini S. Jadhav ◽  
◽  
...  

Most common methods of delivery include the preferred topical (skin), transmucosal (nasal, buccal, sublingual, vaginal, ocular and rectal) and inhalation routes. The conventional dosage forms provide drug release immediately and it causes fluctuation of drug level in blood depending upon dosage form. Therefore to maintain the drug concentration within therapeutically effective range needs novel drug delivery system. In the past few decades, considerable attention has been focused on the development of novel drug delivery system (NDDS). The NDDS should ideally fulfill two prerequisites. Firstly, it should deliver the drug at a rate directed by the needs of the body, over the period of treatment. Secondly, it should channel the active entity to the site of action. In conventional drug delivery systems, there is little or no control over release of the drug and effective concentration at the target site can be achieved by irregular administration of grossly excessive doses. At present, no available drug delivery system behaves ideally, but sincere attempts have been made to achieve them through various novel approaches in drug delivery.


Author(s):  
Tushar N. Sonawane ◽  
Pradip D. Dhangar ◽  
Sagar D Patil ◽  
Azam Z. Shaikh

Novel Drug Delivery Systems are one of the widely use delivery system in the presence scenario. Novel drug delivery system is a novel approach to drug delivery that addresses the limitations of the traditional drug delivery systems. In the form of a Novel Drug Delivery System an existing drug molecule can get a new life. The novel drug delivery system is Increases bioavailability and it Can be used for long-term treatments of chronic illness, Sustained maintenance of plasma drug levels as well as it Decreased adverse drug effects in the total amount of drugs required thus reducing side effects it Improved patient compliance due to reduction in number and frequency of doses required. There is less damage sustained by normal tissue due to targeted drug delivery. In this paper our main focus to give the throughout knowledge of some newer (Novel drug delivery system) to understand the concept of the Novel dossage form.


2021 ◽  
Vol 11 (2) ◽  
pp. 44-49
Author(s):  
ANJALI CHOURASIYA ◽  
◽  
NARENDRA GEHALOT ◽  
SURESH CHANDRA MAHAJAN ◽  
◽  
...  

NDDS is advanced drug delivery system which improves drug potency, control drug release to give a sustained therapeutic effect, provide greater safety, finally it is to target a drug specifically to a desired tissue. Novel drug delivery system have been developed to overcome the limitation of conventional drug delivery systems, such as of gastric retention by decreasing fluctuations in the concentration of the drug in blood,resulting in the reduction in unwanted toxicity and poor efficiency. As compared to traditional dosage forms bilayer tablets are more efficient for sequential release of two drugs that can be different or identical. Bilayer tablet is also capable of separating two incompatible substances and also for sustained release. Gastro retentive drug delivery system retains the period of dosage forms in the stomach or upper gastro intes-tinal tract ,as to improve bioavailability and the therapeutic efficacy of the drugs. Mainly the bilayer drug delivery system is suitable for drugs whose therapethic windows are narrow in the gastrointestinal tract (GIT) and also they have low elimination half life: 3-4 h. The purpose of this review is to disclose the challenges faced during the formulation of bilayer tablets. Finally, the whole article is firmly analyzed in a concluding paragraph. KEYWORDS: Conventional drug delivery systems, Bilayer tablet, Gastro retentive, Bioavailability


2019 ◽  
Vol 9 (1-s) ◽  
pp. 393-402 ◽  
Author(s):  
Bommala Supraja ◽  
Saritha Mulangi

Novel drug delivery system mainly consents about achieving the targeted concentration to release the drug at targeted site by using carrier system, altering the structure and microenvironment around the drug. Especially drugs which are having narrow therapeutic window are difficult to formulate, with the advantage of novel drug delivery systems like particulate, polymeric carrier, macromolecular and cellular carriers. They are used to reduce complications as well as release the drug in a determined fusion at targeted site. In vesicular drug delivery system drug binds covalently to the lipid molecule by which the drug release is in a controlled manner and also drugs which are of hydrophilic or lipophilic nature can be delivered by using vesicular drug delivery systems. The release of drug from the vesicles depends on the physicochemical properties of both the drug and carrier. Vesicular drug delivery includes liposomes, niososmes, transferosomes, pharmacosomes, electrosomes, ethosomes etc. Of all these drug delivery systems pharmacosomes are having more advantages like no leakage or loss of drug, stability, high entrapment efficiency etc, pharmacosomes may be hexagonal aggregates , ultrafine vesicular and micellar forms. Both synthetic and natural drugs which are facing difficulties like low solubility and low permeability can be effectively formulated and can achieve required pharmacokinetic and pharmacodynamic parameters. Pharmacosomes are prepared by hand shaking method, ether injection, solvent evaporation method, anhydrous co-solvent lyophilyzation, supercritical fluid approach and other alternative methods they are characterized by complex determination, surface morphology, drug entrapment, solubility, drug lipid compatibility, crystal state measurement, dissolution studies and in vitro drug release rate. Keywords: Pharmacosomes, covalently, vesicular drug delivery system, hexagonal aggregates, micellar, ultrafine.


Author(s):  
Abhishek Kumar ◽  
Meenakshi Bharkatiya

Oral route has been the most convenient and accepted  route of drug delivery. Owing to tremendous curative  benefits of the oral controlled release dosage forms are  being preferred as the interesting topic in pharmaceutical  field to achieved improved therapeutics advantages.  Gastro retentive drug delivery system is novel drug  delivery systems which has an upper hand owing to its  ability of prolonged retaining ability in the stomach and  thereby increase gastric residence time of drugs and also  improves bioavailability of drugs. Concept of novel drug  delivery system arose to overcome the certain aspect  related to physicochemical properties of drug molecule  and the related formulations. In this context, various  gastro retentive drug delivery systems have been used to  improve the therapeutic efficacy of drugs that have a  narrow absorption window, are unstable at alkaline pH,  are soluble in acidic conditions, and are active locally in  the stomach. Concept of novel drug delivery system  arose to overcome the certain aspect related to  physicochemical properties of drug molecule and the  related formulations. Various approaches are currently  used including gastro retentive floating drug delivery  systems, swelling and expanding system, polymeric bio  adhesive systems, modified shape systems, high density  system and other delayed gastric emptying devices.  Moreover, future perspectives on this technology are  discussed to minimize the gastric emptying rate in both  the fasted and fed states. The present review briefly  addresses the physiology of the gastric emptying  process with respect to floating drug delivery systems.  The purpose of this review is to bring together the recent  literature with respect to the method of preparation, and  various parameters affecting the performance and  characterization of floating microspheres. Attempt has  been made to summarize important factors controlling  gastro retentive drug delivery systems. Overall, this  review may inform and guide formulation scientists in  designing the gastro retentive drug delivery system.


2015 ◽  
Vol 1 (6) ◽  
pp. 244 ◽  
Author(s):  
Audumbar Digambar Mali ◽  
Ritesh Bathe ◽  
Manojkumar Patil

Transdermal drug delivery systems (TDDS), also known as patches, are dosage forms designed to deliver a therapeutically effective amount of drug across a patients skin. In order to deliver therapeutic agents through the human skin for systemic effects, the comprehensive morphological, biophysical and physicochemical properties of the skin are to be considered. Transdermal delivery provides a leading edge over injectables and oral routes by increasing patient compliance and avoiding first pass metabolism respectively. Transdermal delivery not only provides controlled, constant administration of the drug, but also allows continuous input of drugs with short biological half-lives and eliminates pulsed entry into systemic circulation, which often causes undesirable side effects. The TDDS review articles provide valuable information regarding the transdermal drug delivery systems and its evaluation process details as a ready reference for the research scientist who is involved in TDDS. With the advancement in technology Pharma industries have trendified all its resources. Earlier we use convectional dosage form but now we use novel drug delivery system. One of greatest innovation of novel drug delivery is transdermal patch. The advantage of transdermal drug delivery system is that it is painless technique of administration of drugs.


2019 ◽  
Vol 9 (1) ◽  
pp. 279-285 ◽  
Author(s):  
Priyanka Chaurasiya ◽  
Eisha Ganju ◽  
Neeraj Upmanyu ◽  
Sudhir Kumar Ray ◽  
Prabhat Jain

Novel drug delivery systems are now a days is creating a new interest in development of drug deliveries. Vesicular drug delivery system is also a part of these novel drug delivery systems. TDDS is the permeability of the skin, it is permeable to small molecules, lipophilic drug and highly impermeable to the macromolecules and hydrophilic drugs. Recent approaches have resulted in design of two vesicular carriers, ethosomes and ultra flexible lipid based elastic vesicles, transferosomes. Transferosomes have recently been introduced, which are capable of transdermal delivery of low as well as high molecular weight drugs. This offers several potential advantages over conventional routes like avoidance of first pass metabolism, predictable and extended duration of activity, minimizing undesirable side effects, utility of short half life drugs, improving physiological and pharmacological response and have been applied to increases the efficiency of the material transfer across the intact skin, by the use of penetration enhancers, iontophoresis, sonophoresis and use of colloidal carriers such as lipid vesicles (liposomes & proliposomes) and non-ionic surfactant vesicles (niosomes & proniosomes). It is suitable for controlled and targeted drug delivery and it can accommodate drug molecules with wide range of solubility. Due to its high deformability it gives better penetration of intact vesicles. They are biocompatible and biodegradable as they are made from natural phospholipids and have high entrapment efficiency. The preparation variables are depending upon the procedure involved for manufacturing of formulation and the preparation procedure was accordingly optimized and validated. Characterization of transferosomes can be done to know the vesicle size, morphology, drug content, entrapment efficiency, penetration ability, occlusion effect, surface charge, in vitro drug release, in vitro skin penetration etc., It increases stability of labile drugs and provides control release. Transferosomes thus differs from such more conventional vesicles primarily by its softer, more deformable, better adjustable artificial membrane. Keywords: Novel Drug Delivery System, Biocompatible, Characterization, Transferosomes.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Shikha Jain ◽  
Vikas Jain ◽  
S. C. Mahajan

Vesicular drug delivery system can be defined as highly ordered assemblies consisting of one or more concentric bilayers formed as a result of self-assembling of amphiphilic building blocks in presence of water. Vesicular drug delivery systems are particularly important for targeted delivery of drugs because of their ability to localize the activity of drug at the site or organ of action thereby lowering its concentration at the other sites in body. Vesicular drug delivery system sustains drug action at a predetermined rate, relatively constant (zero order kinetics), efficient drug level in the body, and simultaneously minimizes the undesirable side effects. It can also localize drug action in the diseased tissue or organ by targeted drug delivery using carriers or chemical derivatization. Different types of pharmaceutical carriers such as polymeric micelles, particulate systems, and macro- and micromolecules are presented in the form of novel drug delivery system for targeted delivery of drugs. Particulate type carrier also known as colloidal carrier system, includes lipid particles, micro- and nanoparticles, micro- and nanospheres, polymeric micelles and vesicular systems like liposomes, sphingosomes, niosomes, transfersomes, aquasomes, ufasomes, and so forth.


Author(s):  
Bhaskar Mohite ◽  
Rakesh Patel ◽  
Nandu Kayande ◽  
Raju Thenge

Mucoadhesive drug delivery systems are delivery systems which utilize the property of bioadhesion of certain polymers which become adhesive on hydration and hence can be used for targeting a drug to a particular region of the body for extended periods of time. Many of these delivery routes, particularly those through the nasal, ocular, reproductive and gastrointestinal system, involve contact with mucosal surfaces. The gastrointestinal route has been particularly popular among medical staff and patients alike. Although convenient, unfortunately, this route can be very inefficient for a number of reasons, including too rapid transit of the drug-containing delivery system past the optimum site for absorption, which is normally the small intestine and to a lesser degree the stomach and colon. Mucoadhesive formulations use polymers as the adhesive component. Mucoadhesive drug delivery systems are available in the form of tablets, films, patches, and gels for oral, buccal, nasal, ocular, vaginal, rectal and topical routes for both systemic and local effects. This review article represents the various aspects of vaginal drug delivery system, bioadhesion mechanism, Theory of bioadhesion, factors affecting bioadhesion, various types of vaginal formulation etc.


2018 ◽  
Vol 8 (6) ◽  
pp. 335-341 ◽  
Author(s):  
Sudhir Kumar Ray ◽  
Nargish Bano ◽  
Tripti Shukla ◽  
Neeraj Upmanyu ◽  
Sharad P. Pandey ◽  
...  

Target-specific drug-delivery systems for the administration of pharmaceutical compounds enable the localization of drugs to target sites within the body.  The basic component of drug delivery systems is an appropriate carrier that protects the drug from rapid degradation or clearance and thereby enhances drug concentration in target tissues. Niosome are microscopic non-ionic surfactant bilayer vesicles obtained on hydration of synthetic nonionic surfactants, with or without incorporation of cholesterol or their lipids. The amphiphilic nature of niosomes promotes their efficiency in encapsulating lipophilic or hydrophilic drugs.  Noisome are promising vehicle for drug delivery and being non-ionic, more stable, inexpensive, biodegradable, biocompatible, non immunogenic and exhibit flexibility in their structural characterization. Various additives in niosomes include nonionic surfactant as film forming agent, cholesterol as stabilizing and rigidizing agent for the bilayer and various charge inducers which develop a charge on the surface of niosomes and stabilize the prepared formulation by the resulting repulsive forces. Niosomes have been widely evaluated for controlled release and targeted delivery for the treatment of cancer, viral infections, microbial diseases, psoriasis, leishmaniasis, migraine, parkinson and other diseases. Niosomes can prolong the circulation of the entrapped drug in body. Encapsulation of drug in vesicular system can be predicted to prolong the existence of drug in the systemic circulation and enhance penetration into target tissue, perhaps reduce toxicity if selective uptake can be achieved. In addition to conventional, oral and parenteral routes, they are amenable to be delivered by ocular, transdermal, vaginal and inhalation routes. Delivery of biotechnological products including vaccine delivery with niosomes is also an interesting and promising research area. More concerted research efforts, however, are still required to realize the full potential of these novel systems. This review article focuses on the concept of niosomes, advantages and disadvantages, composition, method of preparation, separation of unentrapped drug, factors influencing the niosomal formulation and characterization, marketed formulations of niosomes and also gives up to date information regarding recent applications of niosomes in drug delivery. Keyword:  Drug-delivery system, Niosomes, 


Sign in / Sign up

Export Citation Format

Share Document