scholarly journals EFFECT OF DROUGHT ON THE PERFORMANCE OF THREETURF GRASS SPECIES

2018 ◽  
Vol 78 ◽  
pp. 3-22
Author(s):  
Grzegorz Żurek ◽  
Kamil Prokopiuk ◽  
Agnieszka Rachwalska

Drought is the main environmental factor hampering world agriculture production. In the face of warmingclimate and reduced fresh water resources it become obvious that search for any factors decreasing water useis strongly recommended. Turf grasses able to withstand drought period longer could be recommended for turfareas as parks, lawns, home gardens etc. and relatively lower amounts of water should ensure satisfactory turfquality. Therefore, twelve turf varieties from three major cool-season turf grass species: perennial ryegrass(Lolium perenne L.), Kentucky bluegrass (Poa pratensis L.) and red fescue (Festuca rubra L.) were tested inglasshouse pot experiment and in the laboratory for determination of their relative ability to withstand greenlonger in the face of water deficit.The different response of the examined forms to drought was noted. Conditions that favor fast water depletionwere the most suitable for the expression of water deficit-related traits. Therefore, sandy mixture of 16%volumetric moisture content at field water capacity was mostly suitable for observation of the variation oftested forms. Turf condition of Kentucky bluegrass, as contrary to red fescue, was strongly connected with thesoil moisture. Different manifestation of drought resistance was observed in tested species. Kentucky bluegrass,as rather no resistant to drought, exposed low level of drought avoidance. Red fescue was able to survivedrought mainly due to leaf blades resistant to desiccation. In perennial ryegrass some other mechanismsevolved to survive drought. Early leaf wilting and senescence contributes to nutrient remobilization duringdrought and avoids large water loses during the transpiration. Therefore, perennial ryegrass turf was able toregenerate better after drought, as compared to the other tested grass species.Search for new turf forms should focus on searching for ability to maintain acceptable conditions longer ina presence of increasing water deficit. It will then reduce the duration of period of poor turf conditions andfurther, turf water demands.

1990 ◽  
Vol 115 (4) ◽  
pp. 608-611 ◽  
Author(s):  
Jennifer M. Johnson-Cicalese ◽  
C.R. Funk

Studies were conducted on the host plants of four billbug species (Coleoptera:Curculionidae: Sphenophorus parvulus Gyllenhal, S. venatus Chitt., S. inaequalis Say, and S. minimus Hart) found on New Jersey turfgrasses. A collection of 4803 adults from pure stands of various turfgrasses revealed all four billbugs on Kentucky bluegrass (Poa pratensis L.), tall fescue (Festuca arundinacea Schreb.), and perennial ryegrass (Lolium perenne L.), and S. parvulus, S. venatus, and S. minimus on Chewings fescue (F. rubra L. ssp. commutata Gaud.). Since the presence of larvae, pupae, or teneral adults more accurately indicates the host status of a grass species, immature billbugs were collected from plugs of the various grass species and reared to adults for identification. All four species were reared from immature billbugs found in Kentucky bluegrass turf; immatures of S. venatus, S. inaequalis, and S. minimus were found in tall fescue; S. venatus and S. minimus in perennial ryegrass; and S. inaequalis in strong creeping red fescue (F. rubra L. ssp. rubra). A laboratory experiment was also conducted in which billbug adults were confined in petri dishes with either Kentucky bluegrass, perennial ryegrass, tall fescue, or bermudagrass (Cynodon dactylon Pers.). Only minor differences were found between the four grasses in billbug survival, number of eggs laid, and amount of feeding. In general, bermudagrass was the least favored host and the other grasses were equally adequate hosts. The results of this study indicate a need for updating host-plant lists of these four billbug species.


2002 ◽  
Vol 12 (3) ◽  
pp. 465-469 ◽  
Author(s):  
D.S. Gardner ◽  
J.A. Taylor

In 1992, a cultivar trial was initiated in Columbus, Ohio to evaluate differences in establishment and long-term performance of cultivars of tall fescue (Festuca arundinacea), creeping red fescue (F. rubra), chewings fescue (F. rubra ssp. fallax), hard fescue (F. brevipila), kentucky bluegrass (Poa pratensis), rough bluegrass (P. trivialis), and perennial ryegrass (Lolium perenne) under low maintenance conditions in a shaded environment. Fertilizer and supplemental irrigation were applied until 1994 to establish the grasses, after which no supplemental irrigation, or pesticides were applied and fertilizer rates were reduced to 48.8 kg·ha-1 (1 lb/1000 ft2) of N per year. Percentage cover and overall quality data were collected in 2000 and compared with data collected in 1994. Initial establishment success does not appear to be a good predictor of long-term success of a cultivar in a shaded environment. There was some variability in cultivar performance under shade within a given turfgrass species. The tall fescue cultivars, as a group, had the highest overall quality and percentage cover under shade, followed by the fine fescues, kentucky bluegrass, rough bluegrass, and perennial ryegrass cultivars.


1973 ◽  
Vol 53 (1) ◽  
pp. 69-73 ◽  
Author(s):  
W. E. CORDUKES ◽  
A. J. MACLEAN

Addition of CaCl2∙2H2O at the rate of 2,000 ppm to give a conductivity of 7.2 mmhos/cm in a saturated paste extract of three soils varying in texture from sand to clay loam had no apparent effects on the quality of turf of Kentucky bluegrass, Poa pratensis L., creeping red fescue, Festuca rubra L., and perennial ryegrass, Lolium perenne L., grown in pot tests. When the rate was increased to 8,000 ppm and the conductivity to about 20 mmhos/cm, the turfgrass deteriorated markedly in the clay loam and the sandy loam and to a lesser degree in the sand. All species reacted similarly to the detrimental effect of salt in the soils, and the deterioration in turf quality was accompanied by a decline in root production. The concentration of chloride in leaf tissue usually increased with increasing amounts of salt in the soils and tended to be highest in perennial ryegrass and lowest in creeping red fescue. At the higher rates of salt addition, the amounts of chloride in the turfgrass tended to be lower on the sand than on the other soils.


1986 ◽  
Vol 66 (3) ◽  
pp. 601-608 ◽  
Author(s):  
B. E. GUDLEIFSSON ◽  
C. J. ANDREWS ◽  
H. BJORNSSON

A number of forage grass species were tested for cold hardiness and ice tolerance after growth and cold hardening under controlled conditions. Tests exposing cold-hardened plants to a single level of stress separated species into statistically similar groups but, in a number of cases, the stress was not sufficient to kill plants so the true cultivar rankings were obscured. Derivation of the 50% kill point from a wide range of levels of stress served to identify cold hardiness and ice tolerance levels of cultivars of 10 species. Ranked according to the most hardy cultivar of the species tested were: timothy (Phleum pratense L.), Kentucky bluegrass (Poa pratensis L.), meadow foxtail (Alopecurus pratensis L.), red fescue (Festuca rubra L.), meadow fescue (Festuca pratensis L.), tufted hairgrass (Deschampsia caespitosa L.), creeping foxtail (Alopecurus arundinaceus L.), berings hairgrass (Deschampsia beringensis L.), orchardgrass (Dactylis glomerata L.), reed canarygrass (Phalaris arundinaceae). LT50 values varied from −15.7 °C for timothy to −4.7 °C for reed canarygrass. Cold hardiness and ice tolerance were only loosely associated (r = 0.36). The most ice-tolerant species were berings and tufted hairgrasses and timothy with LI50 values of 50, 39 and 44 d, respectively.Key words: Acclimation, encasement, freezing, resistance


Weed Science ◽  
1977 ◽  
Vol 25 (6) ◽  
pp. 487-491 ◽  
Author(s):  
S.W. Bingham

Yellow nutsedge (Cyperus esculentusL.) control with herbicides was evaluated with and without competition from turfgrasses. Postemergence applications of cyperquat (1-methyl-4-phenylpryidinium) provided safe selective control of yellow nutsedge in Kentucky bluegrass (Poa pratensisL. ‘Merion’), perennial ryegrass (Lolium perenneL. ‘Manhatten’), and red fescue (Festuca rubraL. ‘Pennlawn’). Pre- and post-emergence applications of perfluidone {1,1,1-trifluoro-N-[2-methyl-4-(phenylsulfonyl)phenyl] methanesulfonamide} controlled yellow nutsedge when rainfall or irrigation was adequate for good turfgrass growth. Under dry conditions, perfluidone slightly injured Kentucky bluegrass and gave poor control of yellow nutsedge. Bentazon [3-isopropyl-1H-2,1,3-benzothiadiazin-(4)3H-one2,2-dioxide] was less effective than cyperquat or perfluidone for yellow nutsedge control and required split applications. Bentazon did not injure Kentucky bluegrass. Napropamide [2-(α-naphthoxy)-N,N-diethylpropionamide] and Vel 3973 [N-(2,4-dimethyl-5-{[(trifluoromethyl)sulfonyl]amino}phenyl)acetamide] did not provide adequate yellow nutsedge control. Vel 5052 {2-chloro-N-(2,6-dimethyl-phenyl-N-[(1,3-dioxolan-2-yl)methyl] acetamide}showed promise for yellow nutsedge control.


2011 ◽  
Vol 136 (4) ◽  
pp. 247-255 ◽  
Author(s):  
Lixin Xu ◽  
Liebao Han ◽  
Bingru Huang

The objectives of this study were to examine antioxidant enzyme responses to drought stress and rewatering at both enzymatic activity and transcript levels and to determine the major antioxidant processes associated with drought tolerance and post-drought recovery for a perennial grass species, kentucky bluegrass (Poa pratensis). Antioxidant enzyme responses to drought and rewatering in a drought-tolerant cultivar (Midnight) and a drought-sensitive cultivar (Brilliant) were compared in a growth chamber. Plants were exposed to 22 days of drought stress for ‘Midnight’ and 18 days for ‘Brilliant’ before rewatering to allow the leaf relative water content (RWC) of both cultivars to drop to the same level. ‘Midnight’ exhibited higher photochemical efficiency (Fv/Fm) and lower electrolyte leakage compared with ‘Brilliant’ when at the same water deficit status (26% to 28% RWC). After 6 days of rewatering, all physiological parameters returned to the control level for ‘Midnight’, but only Fv/Fm fully recovered for ‘Brilliant’. The transcript level of cytosolic copper/zinc superoxide dismutase (cyt Cu/Zn SOD) and ascorbate peroxidase (APX) was significantly higher in ‘Midnight’ than in ‘Brilliant’ when exposed to the same level of water deficit (26% to 28% RWC), suggesting that SOD and APX could be involved in scavenging oxidative stress-induced reactive oxygen species in kentucky bluegrass through changes in the level of gene expression. Significantly higher activities of APX, monodehydroascorbate reductase, glutathione reductase, and dehydroascorbate reductase as well as lower lipid peroxidation levels were observed in ‘Midnight’ versus ‘Brilliant’ when exposed to drought. However, the activities of SOD, catalase (CAT), and guaiacol peroxidase (POD) did not differ between the two cultivars. After 6 days of rewatering, ‘Midnight’ displayed significantly higher activity levels of CAT, POD, and APX compared with ‘Brilliant’. The enzyme activity results indicate that enzymes involved in the ascorbate–glutathine cycle may play important roles in antioxidant protection to drought damage, whereas CAT, POD, and APX could be associated with better post-drought recovery in kentucky bluegrass.


HortScience ◽  
1999 ◽  
Vol 34 (3) ◽  
pp. 490D-490 ◽  
Author(s):  
Hoon Kang ◽  
Chiwon W. Lee

The influence of increasing levels (0.0%, 0.05%, 0.1%, 0.2%, 0.4%, 0.6%, 0.8%, 1.2%, 1.6%, and 2.0%) of NaCl on the germination of Kentucky bluegrass (Poa pratensis), annual ryegrass (Lolium multiflorum), perennial ryegrass (Lolium perenne), creeping bentgrass (Agrostis palustris), tall fescue (Festuca arundinacea), and crested wheatgrass (Agropyron cristatum) was investigated. Kentucky bluegrass, creeping bentgrass, and crested wheatgrass had a 50% reduction in germination at 0.2%, 0.6%, and 0.6% NaCl, respectively, compared to the control and completely lost germination at 0.6%, 1.2%, and 1.6% NaCl, respectively. Seed germination in both annual ryegrass and perennial ryegrass was only 50% of the control at 1.2% NaCl and completely inhibited at 2.0% NaCl. Tall fescue, red fescue, and creeping red fescue showed a 50% reduction in germination at NaCl concentrations of 1.2%, 1.2%, and 0.8%, respectively, while showing a complete inhibition of germination at 2.0%, 2.0%, and 1.6% NaCl, respectively.


2005 ◽  
Vol 85 (1) ◽  
pp. 213-224 ◽  
Author(s):  
J. J. Soroka ◽  
B. D. Gossen

Silvertop, which is characterized by whitish, completely sterile seed heads produced on green tillers, is a common symptom in many perennial grasses. A 3-yr study of creeping bentgrass (Agrostis palustris), Kentucky bluegrass (Poa pratensis) and creeping red fescue (Festuca rubra subsp. rubra) grown for seed production was conducted at Saskatoon, Saskatchewan, to investigate the cause(s) of silvertop, the impact of residue management strategies on silvertop incidence, and the impact of silvertop on seed yield. Three residue management practices were applied in the fall of the first harvest year and again the next fall, as follows: (i) burned after harvest; (ii) clipped to 1–2 cm in height and the residue removed; or (iii) mowed to 20 cm and the residue retained. Arthropods in each plot were collected weekly from May until July by sweep sampling, counted, and identified to family level or lower, and the incidence of seed heads with and without silvertop were assessed. The majority of arthropods were thrips, leafhoppers, plant bugs, mites, or grass-dwelling flies. Grass species and residue treatment strongly affected the number of reproductive tillers and levels of silvertop. Levels of silvertop were lowest in creeping bentgrass in all 3 yr of the study, while they were similar for Kentucky bluegrass and creeping red fescue. Mown plots had fewer reproductive tillers, fewer heathy seed heads, and higher levels of silvertop than burned or clipped plots. However, arthropod species composition was generally similar across grass species and residue treatments. This indicates that a specific arthropod taxon may not be a critical factor in silvertop expression. The relationship between the number and composition of arthropods found and incidence of silvertop is discussed. Key words: Festuca rubra subsp. rubra, Poa pratensis, Agrostis palustris, seed production, arthropods, silvertop


Weed Science ◽  
1978 ◽  
Vol 26 (6) ◽  
pp. 675-678 ◽  
Author(s):  
W. O. Lee

The carbon banding technique was evaluated for control of volunteer Kentucky bluegrass(Poa pratensisL.) while Kentucky bluegrass was established for seed production. At Madras, Oregon, where terbacil (3-tert-butyl-5-chloro-6-methyluracil), diuron [3-(3,4-dichlorophenyl)-1,1-dimethylurea], atrazine [2-chloro-4-(ethylamino)-6-(isopropylamino)-s-triazine], and simazine [2-chloro-4,6-bis(ethylamino)-s-triazine] were applied at several rates each, volunteer Kentucky bluegrass control between the carbon bands ranged from 80 to 99+%. At Corvallis, Oregon, where Colonial bentgrass(Agrostis tenuisSibth. ‘Highland’), red fescue(Festuca rubraL. ‘Pennlawn’), perennial ryegrass(Lolium perenneL. ‘NK-100’), and orchardgrass(Dactylis glomerataL. ‘S-143’) were planted to allow identification of volunteer Kentucky bluegrass both between and in the carbon bands, diuron, atrazine, and a combination of diuron and terbacil eliminated volunteer Kentucky bluegrass. Terbacil did not control all Kentucky bluegrass between the bands. None of the herbicide treatments adversely affected crop establishment or seed yield.


Sign in / Sign up

Export Citation Format

Share Document