scholarly journals Antibiotic Encapsulated Nanomaterials with Application in Medical Area

2018 ◽  
Vol 55 (4) ◽  
pp. 552-554
Author(s):  
Alina Costina Luca ◽  
Letitia Doina Duceac ◽  
Geta Mitrea ◽  
Madalina Irina Ciuhodaru ◽  
Daniela Luminita Ichim ◽  
...  

Novel materials belonging to the class of anionic clays are synthesized by investigating their properties at nano scale. Thus, hydrotalcites or layered double hydroxides (LDHs) were used as drug delivery carriers in order to prevent or to treat infections produced by some pathogen agents. Their physical and chemical properties allow them to include different molecules in the interlayer space and then to ensure their transport to the target. The current work reveals the obtaining of nanohybrid compounds type amoxicillin/clavulanic acid-layered double hydroxides (Amox/CA-LDHs) followed by structural and morphological characterization of these nanostructures for future applications as drug controlled release systems. IR spectroscopy and Scanning Electron Microscopy pointed out LDHs ability to incorporate the medicines without modification of therapeutic activity.

2018 ◽  
Vol 69 (2) ◽  
pp. 321-323
Author(s):  
Georgeta Zegan ◽  
Elena Mihaela Carausu ◽  
Loredana Golovcencu ◽  
Alina Sodor Botezatu ◽  
Eduard Radu Cernei ◽  
...  

Anionic clay matrix acting as drug controlled release system have shown in last years a great potential for delivery of bioactive molecules and chemical therapeutics. This organic-inorganic nanohybrid system is high efficient offering an excellent protection of intercalated compounds from degradation. Compared to other nanoparticles used in medical area, anionic clays type layered double hydroxides have found to be biocompatible according to toxicological studies. Ampicillin containing MgAlLDHs and ZnAlLDH samples have been prepared following two routes: anion-exchange procedure and reconstruction from calcined layered double hydroxides. Solid samples have been characterized by FTIR and SEM-EDX highlighting the alteration of pristine LDHs structure when the antibiotic is introduced in the interlayer gallery.


Química Nova ◽  
2021 ◽  
Author(s):  
Kamila Ody ◽  
João Jesus ◽  
Carlos Cava ◽  
Anderson Albuquerque ◽  
Ary Maia ◽  
...  

ASSESSMENT OF THE ELECTRONIC STRUCTURE OF THE MONOCLINIC PHASE OF NIOBIUM OXIDE BASED ON THE USE OF DIFFERENT DENSITY FUNCTIONALS. Niobium oxides, Nb2O5, are considered semiconductor materials with very attractive physical and chemical properties for applications in many areas, such as catalysis, sensors, medical, aerospace, etc. Especially, the characterization of Nb2O5-based nanostructures with monoclinic structure has received much attention in recent years. However, despite the great importance of this system, some of its fundamentals properties are still not fully understood. Hence, this work aims to apply the theoretical methodologies through Density Functional Theory (DFT) calculations in periodic models based on the use of different density functionals (like B1WC, B3PW, B3LYP, PBE0, PBESOL0, SOGGAXC, and WC1LYP) to investigate the physical and chemical properties of the monoclinic structure of Nb2O5. The band structures, energy bandgap, density of state, and vibrational properties, as well as order-disorder effects on the monoclinic structure of Nb2O5 are investigated in this study. Our theoretical results show a better agreement with experimental data for the B3LYP functional and hence lead to new perspectives on the deeper physicochemical understanding of the monoclinic Nb2O5. From these computational tools, it is possible to unravel the relations between structure and properties, which may contribute to the future development of new devices and applications based on these materials.


2019 ◽  
Vol 40 (6) ◽  
pp. 2581
Author(s):  
Adriana Cristina Bordignon ◽  
Maria Luiza Rodrigues de Souza ◽  
Eliane Gasparino ◽  
Edson Minoru Yajima ◽  
Jesuí Vergílio Visentainer ◽  
...  

After Nile tilapia skin was preserved using the methods of freezing and dry salting, characteristics of skin gelatin were evaluated with regard to yield, rheological features and physical and chemical properties. Preservation was performed after filleting, at which time skins were either frozen (-18°C) for 7 days or salted (25°C) for 7 days. Although no differences (p > 0.05) were observed with respect to humidity, protein, lipid, ash and calcium levels, gelatin from salted skins had a higher concentration of iron relative to frozen skins. Further, twenty-three fatty acids were detected in salted skins compared with merely three found in skin derived gelatin. Of amino acids found, glycine, alanine, proline and arginine were the most abundant. Hydroxyproline abundance in salted and frozen skin gelatin were 8.76% and 8.71%, respectively. In addition, salted skin gelatins had a greater accumulation of saturated fatty acids and lower rates of monounsaturated fatty acids. Salted skin gelatin had the highest yield (18g × 100g-1), gel strength (200 g) and viscosity (19.02mPas) when compared to the yield (17g × 100g-1), gel strength (12.7g) and viscosity (9.16 mPas) of frozen skins. Results show that gelatin from dry salted skin had the best yield and also had relatively better rheological properties, more iron, and better coloration relative to gelatin obtained from frozen skins of Nile tilapia.


2019 ◽  
Vol 942 ◽  
pp. 40-49
Author(s):  
Yulia Murashkina ◽  
Olga B. Nazarenko

Natural zeolite of Shivirtui deposit (Russia) was modified with nanofibers of aluminum oxyhydroxide AlOOH. Aluminum oxyhydroxide nanofibers were produced at the heating and oxidation of aluminum powder with water. The properties of modified zeolite were investigated by means of X-ray diffraction, transmission electronic microscopy, scanning electronic microscopy, low-temperature nitrogen adsorption, thermal analysis, and Fourier transform infrared spectroscopy. It was found that water content in the modified sample of zeolite was about 15 %. Based on the study of the physical and chemical properties, shivirtui zeolite modified with nanofibers of aluminum oxyhydroxide can be proposed for use as a flame-retardant additive to polymers.


Polymers ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 134
Author(s):  
Masaki Watanabe ◽  
Yoshihide Hashimoto ◽  
Tsuyoshi Kimura ◽  
Akio Kishida

The purpose of this study was to evaluate the physical and chemical properties of engineering plastics processed using supercritical CO2. First, we prepared disk-shaped test pieces via a general molding process, which were plasticized using supercritical CO2 at temperatures lower than the glass-transition points of engineering plastics. Amorphous polymers were plasticized, and their molecular weight remained nearly unchanged after treatment with supercritical CO2. The mechanical strength significantly decreased despite the unchanged molecular weight. The surface roughness and contact angle increased slightly, and electrical properties such as the rate of charging decreased significantly. These results suggest that supercritical CO2 could be used for a new molding process performed at lower temperatures than those used in general molding processes, according to the required properties.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Shijiao Zhao ◽  
Jingtao Ma ◽  
Rui Xu ◽  
Xuping Lin ◽  
Xing Cheng ◽  
...  

AbstractZirconium compounds has been widely attention over the last decades due to its excellent physical and chemical properties. Zirconium nitride nanopowders were synthesized via a simple direct carbothermic nitridation process of internal gel derived zirconia in the presence of nano-sized carbon black. The effects of reaction temperature, dwell time and molar ratio of carbon black to Zr (C/Zr) on the phase composition, grain size and crystal parameters of products were studied. Based upon the analysis of crystallite phase evolution and microstructure characterization, it was found that zirconium oxynitride is intermediate product and then O atoms in oxynitride were extracted by oxygen getter, carbon black. Anion sites were directly replaced by N atoms to form rock-salt type nitride in carbothermic nitridation process.


2014 ◽  
Vol 979 ◽  
pp. 440-443
Author(s):  
W. Siriprom ◽  
K. Teanchai ◽  
S. Kongsriprapan ◽  
J. Kaewkhao ◽  
N. Sangwaranatee

The chemical and physical properties of topsoil and subsoil which collected from the cassava cropping area in Chonburi Province have been investigated. The characterization of both soil sample were used X-Ray Diffraction (XRD), Energy Dispersive X-Ray Fluorescence (EDXRF) while FTIR used to confirmed the formation of intermolecular bonding and Thermo-Gravimetric Analysis (TGA) used for investigated the crystalline. It was found that, the XRD pattern indicated quartz phase. The chemical composition by XRF reported that the soils samples consist of Si, Al, Ca, Fe, K, Mn, Ti, Cr, Zn, Ag and Cu. and TGA results, noticed that the removal of moisture and organics material.


1987 ◽  
Vol 65 (4) ◽  
pp. 884-887 ◽  
Author(s):  
A. J. Sillman

The blue-sensitive visual pigment of the green rods of Bufo marinus was extracted with digitonin. The pigment is present in an amount equal to about 11% that of rhodopsin. It is based on vitamin A1 and exhibits a maximum absorbance of 433 nm. The pigment is labile and readily destroyed by hydroxylamine, regenerates to a much greater degree than does rhodopsin, and is more effectively extracted from the membrane than is rhodopsin. The green rod pigment of Bufo marinus appears to share the same physical and chemical properties as the green rod pigments of other amphibians. Therefore, the results of electrophysiological studies on the green rods of Bufo marinus can be more confidently generalized to other species. The results are discussed in terms of the blue phototaxis that is characteristic of many amphibians.


Sign in / Sign up

Export Citation Format

Share Document