scholarly journals Effect of Crosslink Density on Cut and Chip Resistance of 100% SBR Based Tire Tread Compound

2021 ◽  
Vol 58 (1) ◽  
pp. 34-46
Author(s):  
Elangovan Kasi ◽  
Francis Xavier Josephraj ◽  
Arun Kumar Murugesan ◽  
Balu Pandian

The effect of Crosslink density on Cut and Chip resistance was affected on a typical 100 percent styrene-butadiene rubber (SBR)-based tire tread compound. In order to successfully develop products for tires used in off-road or poor roads and other demanding rubber applications, it is important to understand the C and C effect in rubber. Crosslink density varied by varying the sulphur to the accelerator ratio and also by changing the process aids. Basic polymer, filler and other ingredients such as activators and anti-degradants have remained unchanged. In the first setup, the sulphur was kept constant and the accelerator varied and the reverse was done in the second setup. It was made to achieve different crosslink density by changing the oil dosage and adding different resins. An attempt has been made to correlate Cut and Chip resistance to other physical properties. All these tests have been identified and optimized by the traditional tire tread compound.

2013 ◽  
Vol 844 ◽  
pp. 45-48
Author(s):  
Weerawut Naebpetch ◽  
Banja Junhasavasdikul ◽  
Anuwat Saetung ◽  
Tulyapong Tulyapitak ◽  
Nattapong Nithi-Uthai

In this work, to study the utilization of zinc dimethacrylate (ZDMA) in sulfur vulcanized styrene butadiene rubber (SBR). The compounds were prepared by two roll mill mixer. Crosslink density and crosslink types were determined with an equilibrium swelling method. Physical properties and heat aging resistance were studied. The results shows that increase of ZDMA will decrease cure rate index and crosslink density which lead to decreased in 300% modulus and hardness. However, the addition of ZDMA can improve tensile strength, tear strength, elongation at break and heat aging resistance.


2021 ◽  
pp. 096739112110313
Author(s):  
Ahmed Abdel-Hakim ◽  
Soma A el-Mogy ◽  
Ahmed I Abou-Kandil

Blending of rubber is an important route to modify properties of individual elastomeric components in order to obtain optimum chemical, physical, and mechanical properties. In this study, a novel modification of styrene butadiene rubber (SBR) is made by employing acrylic rubber (ACM) to obtain blends of outstanding mechanical, dynamic, and oil resistance properties. In order to achieve those properties, we used a unique vulcanizing system that improves the crosslink density between both polymers and enhances the dynamic mechanical properties as well as its resistance to both motor and break oils. Static mechanical measurements, tensile strength, elongation at break, and hardness are improved together with dynamic mechanical properties investigated using dynamic mechanical analyses. We also proposed a mechanism for the improvement of crosslink density and consequently oil resistance properties. This opens new opportunities for using SBR/ACM blends in oil sealing applications that requires rigorous mechanical and dynamic mechanical properties.


2018 ◽  
Vol 197 ◽  
pp. 12006 ◽  
Author(s):  
Indra Surya ◽  
Hanafi Ismail

By using a semi-efficient sulphur vulcanisation system, the effects of alkanolamide (ALK) addition on cure characteristics, crosslink density and tensile properties of carbon black (CB)-filled styrene-butadiene rubber (SBR) compounds were investigated. The ALK was prepared from Refined Bleached Deodorized Palm Stearin and diethanolamine and added into the CB-filled SBR compounds. The ALK loadings were 1.0, 3.0, 5.0 and 7.0 phr. It was found that ALK decreased the scorch and cure times of the CB-filled SBR compounds. ALK also improved the tensile modulus and tensile strength; especially up to a 5.0 phr of loading. The crosslink density measurement proved that the 5.0 phr of ALK exhibited the highest degree of crosslink density which caused the highest in tensile modulus and tensile strength. Due to its plasticity effect, ALK increased the elongation at break of the CB-filled SBR vulcanisates.


1974 ◽  
Vol 47 (2) ◽  
pp. 266-281 ◽  
Author(s):  
C. K. Das ◽  
S. Banerjee

Abstract The effect of sulfur, MBT, zinc oxide, and stearic acid on the DCP vulcanization of SBR has been studied. DCP decomposition obeys first order kinetics in all cases, but its rate constant is higher in presence of MBT. Sulfur and MBT reduce the crosslink density due to DCP. In the mixes containing sulfur, MBT, zinc oxide, and stearic acid in presence of DCP the crosslink density is initially additive. Here oxidation of some pendent vinyl groups are effected by DCP, and these groups also take part in thiol addition reaction with MBT. The thiazole accelerated sulfuration of SBR proceeds fundamentally by the same mechanism as reported for NR, but the details show slight difference chiefly due to the presence of pendent vinyl groups and styrene units in the chain and due to the absence of pendent methyl groups in SBR.


1959 ◽  
Vol 32 (2) ◽  
pp. 536-538
Author(s):  
M. P. Zverev ◽  
P. I. Zubov

Abstract 1. The glass and flow temperatures and the strength and relative extension of rubber depend not only on the concentration of the plasticizer but also on its molecular structure. 2. Styrene butadiene rubber plasticized with nonpolar plasticizers has higher glass and flow transition temperatures than rubber plasticized with polar substances. The same relationships are found for the strength and relative extension of vulcanizates of this rubber. 3. Nonpolar plasticizers also weaken intramolecular interaction to a greater extent than polar plasticizers.


2019 ◽  
Vol 52 (7) ◽  
pp. 593-608
Author(s):  
Alessandra de Alencar Padua Gabino ◽  
Cléverson Fernandes Senra Gabriel ◽  
Ana Maria Furtado de Sousa ◽  
Cristina Russi Guimarães Furtado ◽  
Bluma Guenther Soares

This study aimed at evaluating the coupling effect of silane Si69 bis(triethoxysilylpropyl)tetrasulfide in metakaolin (MK) in automobile tire tread compounds based on a styrene–butadiene rubber/butadiene rubber blend. A reference compound of a typical tread recipe, filled with silica and carbon black, was used as a reference due to the acknowledged effect of TESPT in silica incorporation in elastomers. A silica sample without silane was also prepared. Silica was then completely substituted by MK, producing two samples, with and without silane. The samples were tested for crosslink density, rheometry, and morphology, and the vulcanization reaction parameters were determined and evaluated. Silane improved the interaction between MK and the polymer matrix, evidenced by the increase in crosslink density and vulcanization reaction rate, the same effect silane causes on silica-filled composites. Morphology also revealed that silane increased MK dispersion and adhesion to rubber. On the other hand, MK seems not to be as reinforcing as silica, considering that maximum torque is related to the stiffness of the material, with MK exhibiting lower values for this parameter.


1965 ◽  
Vol 38 (4) ◽  
pp. 961-966 ◽  
Author(s):  
S. K. Bhatnagar ◽  
S. Banerjee

Abstract Changes in the value of [η], [ηm], K′, (M) and μ of SBR masticated in the cold at 25.0 ± 5.0° C in presence of oxygen with the times of mastication are reported. An empirical relation has been developed between the intrinsic viscosity [η] and Mooney viscosity [ηm] which permits molecular weight of the rubber to be determined directly from Mooney viscosity. The value of g which appears in the Flory equation connecting true crosslink density with the physically determined one has been calculated for unfilled SBR.


2003 ◽  
Vol 76 (2) ◽  
pp. 299-317 ◽  
Author(s):  
A. M. Shanmugharaj ◽  
Anil K. Bhowmick

Abstract Rheometric and mechanical properties, hysteresis and swelling behavior of the Styrene-Butadiene Rubber vulcanizates (SBR) filled with unmodified and novel electron beam modified surface treated dual phase fillers were investigated. Scorch time increases for these modified filler loaded vulcanizates due to introduction of quinone type oxygen on the surface. Electron beam modification of dual phase filler in the absence of trimethylol propanetriacrylate (TMPTA) or triethoxysilylpropyltetrasulphide (Si-69) significantly improves the modulus of the SBR vulcanizates, whereas the values of tensile strength and elongation at break drop. However, presence of TMPTA or silane slightly increases the modulus with significant improvement in tensile strength. This effect is more pronounced at higher loading of these modified fillers in SBR vulcanizates. These variations in modulus and tensile strength are explained by the equilibrium swelling data, Kraus plot and a new mathematical model interpreting the polymer-filler interaction. Hysteresis loss ratio of SBR vulcanizates loaded with irradiated fillers in absence and presence of TMPTA or silane increases due to highly aggregated structure of the filler.


2013 ◽  
Vol 812 ◽  
pp. 236-240
Author(s):  
Mohd Zaki Nurul Ayunie ◽  
Ahmad Zafir Romli ◽  
M.A. Wahab ◽  
Mohd Hanafiah Abidin

The effects of epoxidized palm oil (EPO) content in carbon black filled styrene butadiene rubber (SBR) on tensile strength, elongation at break and crosslink density were investigated. Five different loadings of EPO in parts per hundred rubbers (phr) were used to test the tensile strength of the carbon black filled SBR which showed a decreasing trend as the content of EPO in the vulcanizates increased. In contrast, elongation at break showed the opposite trend where the elongation at break increased as the content of the EPO increased. The SBR vulcanizates with the highest content of EPO gave the highest value of elongation at break which is 2393.56%. In the case of swelling index, it was found to increase as the amount of EPO increased.


Sign in / Sign up

Export Citation Format

Share Document