Experimental and Modelling Approach of Biogas Production by Anaerobic Digestion of Agricultural Resources

2017 ◽  
Vol 68 (6) ◽  
pp. 1294-1297 ◽  
Author(s):  
Gabriela Alina Dumitrel ◽  
Adrian Eugen Cioabla ◽  
Ioana Ionel ◽  
Lucia Ana Varga

Anaerobic digestion processes of agricultural resources, as single substrates (wheat bran and barley) or as combination of substrates (75 % corn&25% corn cob � named MIX1 and 40 % corn & 40 % wheat&20 % sunflower husks � named MIX2), were performed, at a mesophilic temperature in a batch reactor, at pilot scale. The results proved that the higher quantity of biogas yield was achieved for barley, followed by MIX1, and finally MIX2. The same order was obtained when the total methane production was evaluated. The performances of digesters were mathematically evaluated by using the modified Gompertz equation. The kinetic parameters, such as the methane production potential (MP), the maximum methane production rate (Rm) and the extent of lag phase (l) were calculated, for each experimental case. The values of the performance indicators confirmed that all the models fitted well with the experimental data.

2018 ◽  
Vol 64 (No. 3) ◽  
pp. 128-135 ◽  
Author(s):  
Radmard Seyed Abbas ◽  
Alizadeh Hossein Haji Agha ◽  
Seifi Rahman

The effects of thermal (autoclave and microwave irradiation (MW)) and thermo-chemical (autoclave and microwave irradiation – assisted NaOH 5N) pretreatments on the chemical oxygen demand (COD) solubilisation, biogas and methane production of anaerobic digestion kitchen waste (KW) were investigated in this study. The modified Gompertz equation was fitted to accurately assess and compare the biogas and methane production from KW under the different pretreatment conditions and to attain representative simulations and predictions. In present study, COD solubilisation was demonstrated as an effective effect of pretreatment. Thermo-chemical pretreatments could improve biogas and methane production yields from KW. A comprehensive evaluation indicated that the thermo-chemical pretreatments (microwave irradiation and autoclave- assisted NaOH 5N, respectively) provided the best conditions to increase biogas and methane production from KW. The most effective enhancement of biogas and methane production (68.37 and 36.92 l, respectively) was observed from MW pretreated KW along with NaOH 5N, with the shortest lag phase of 1.79  day, the max. rate of 2.38 l·day<sup>–1</sup> and ultimate biogas production of 69.8 l as the modified Gompertz equation predicted.


2011 ◽  
Vol 697-698 ◽  
pp. 326-330 ◽  
Author(s):  
S.X. Zhou ◽  
Y.P. Dong ◽  
Y.L. Zhang

Microbial pretreatment was applied to enhance biogas production from corn stover through solid-state anaerobic digestion, but the price of microbial strains is high. The objective of this study was to find the effects on biogas production by the naturally microbial pretreatment method. The highest cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained in B group (the pretreated corn straws with cow dung), which was 19.6% higher than that of the untreated samples. The D group(the pretreated corn straws with the sludge)cumulative biogas yield for 60-day solid-state anaerobic digestion was obtained, which was 18.87% higher than that of the untreted samples. The biogas of D group increased to the range of 55%~60% methane content, while B group with the range of 75%~80%.The results indicated that the pretreated corn straws mixing cow manure can improve both the biogas production yield and the content of methane in CH4。


2018 ◽  
Vol 2 (1) ◽  
pp. 18-22
Author(s):  
Rafiqqah Mohamad Sabri ◽  

In this research, sago mill effluent was treated using anaerobic sequencing batch reactor (ASBR). Seven HRT from 10 to 1.5 days were tested to evaluate the methane production from sago mill effluent. The findings revealed the highest methane production rate was found at 1.288 L CH4/L reactor. d under HRT of 2 days The results showed that COD removals decreased from 70% to 47% as HRT was reduced from 10 to 2 days. The HRT 1.5 days was found critical for the studied system, which leads to decreased in methane production, yield and COD removal. Overall, ASBR was capable to treat sago mill effluent in producing methane by means of anaerobic digestion.


Catalysts ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1094
Author(s):  
Marco Chiappero ◽  
Francesca Cillerai ◽  
Franco Berruti ◽  
Ondřej Mašek ◽  
Silvia Fiore

Biochar (BC) recently gained attention as an additive for anaerobic digestion (AD). This work aims at a critical analysis of the effect of six BCs, with different physical and chemical properties, on the AD of mixed wastewater sludge at 37 °C, comparing their influence on methane production and AD kinetics. AD batch tests were performed at the laboratory scale operating 48 reactors (0.25 L working volume) for 28 days with the addition of 10 g L−1 of BC. Most reactors supplemented with BCs exhibited higher (up to 22%) methane yields than the control reactors (0.15 Nm3 kgVS−1). The modified Gompertz model provided maximum methane production rate values, and in all reactors the lag-phase was equal to zero days, indicating a good adaptation of the inoculum to the substrate. The potential correlations between BCs’ properties and AD performance were assessed using principal component analysis (PCA). The PCA results showed a reasonable correlation between methane production and the BCs’ O–C and H–C molar ratios, and volatile matter, and between biogas production and BCs’ pore volume, specific surface area, and fixed and total carbon. In conclusion, the physic-chemical properties of BC (specifically, hydrophobicity and morphology) showed a key role in improving the AD of mixed wastewater sludge.


2015 ◽  
Vol 72 (6) ◽  
pp. 937-945 ◽  
Author(s):  
S. I. Pérez-Elvira ◽  
I. Sapkaite ◽  
F. Fdz-Polanco

Thermal steam-explosion is the most extended hydrolysis pretreatment to enhance anaerobic digestion of sludge. Thermal hydrolysis key parameters are temperature (T) and time (t), and the generally accepted values reported from full-scale information are: 150–230 °C and 20–60 min. This study assesses the influence of different temperature–time–flash combinations (110–180 °C, 5–60 min, 1–3 re-flashing) on the anaerobic degradation of secondary sludge through biochemical methane potential (BMP) tests. All the conditions tested presented higher methane production compared to the untreated sludge, and both solubilization (after the hydrolysis) and degradation (by anaerobic digestion) increased linearly when increasing the severity (T–t) of the pretreatment, reaching 40% solubilization and degradation of the particulate matter at 180° C–60 min. However, for the 180 °C temperature, the treatment time impacted negatively on the lag phase. No influence of re-flashing the pretreated matter was observed. In conclusion, thermal steam-explosion at short operation times (5 min) and moderate temperatures (145 °C) seems to be very attractive from a degradation point of view thus presenting a methane production enhancement similar to the one obtained at 180°C and without negative influence of the lag phase.


2016 ◽  
Vol 36 (01) ◽  
pp. 79
Author(s):  
Darwin Darwin ◽  
Yusmanizar Yusmanizar ◽  
Muhammad Ilham ◽  
Afrizal Fazil ◽  
Satria Purwanto ◽  
...  

Thermal pre-treatment was given on corn stover in the purpose of breaking the lignin content; thus, it may help anaerobic microorganisms to convert polymer including cellulose and hemicelluloses into biogas. This study aimed to investigate the effects of thermal pre-treatment on corn stover in anaerobic digestion process related to the production of biogas as well as digestion process efficiency. This research was carried out by utilizing batch reactors where the temperature was maintained at mesophilic conditions above room temperature (33 ± 2 oC). Based on the result, it was known that thermal pre-treatment given on the corn stover may enhance anaerobic digestion process for biogas production at the first 10 days. This condition reduced the time of lag phase during anaerobic digestion. The biogas production of corn stover given thermal pre-treatment was slow at 26 days where their average total production were 12,412.5 mL,12,310 mL at 15 and 25 minutes thermal pre-treatment, respectively while biogas production of non pre-treated corn stover was 12,557 mL. The highest daily biogas production was accomplished by corn stover that was given thermal pre-treatment at 25 minutes (915 mL). Corn stover given with 15 minutes thermal pre-treatment also generated higher daily biogas production at day 9 (772.5 mL) compared with corn stover that was not pre-treated (405 mL). This research also revealed that corn stover given thermal pre-treatment reached higher biogas yield compared with non pre-treated corn stover where their biogas yield were 670.39, 690.65 mL/g volatile solids added at 15 and 25 minutes thermal pre- treatment respectively, and 456.37 mL/g volatile solids added of non pre-treated corn stover.Keywords: Thermal pre-treatment, corn stover, anaerobic digestion, biogas ABSTRAKThermal pre-treatment diberikan pada limbah tanaman jagung dengan tujuan untuk memecahkan kandungan lignin yang terdapat pada limbah tanaman jagung sehingga memudahkan mikroorganisme anaerobik untuk mengkonversi polimer yang berupa selulosa dan hemiselulosa menjadi biogas. Tujuan dari penelitian ini adalah untuk melakukan kajian mengenai penerapan thermal pre-treatment pada limbah tanaman jagung terhadap proses anaerobik digesi yang meliputi efisiensi proses digesi dan produksi biogas yang dihasilkan. Penelitian ini dilakukan dengan menggunakan reaktor tipe batch yang suhunya dipertahankan pada kondisi mesophilic atau di atas rata-rata suhu kamar (33 ± 2 oC). Hasil penelitian diperoleh bahwa thermal pre-treatment yang diberikan pada limbah tanaman jagung mampu mempercepat proses produksi biogas pada 10 hari pertama sehingga dapat mengurangi lag-phase pada proses anaerobik digesi. Limbah tanaman jagung yang diberikan thermal pre-treatment mengalami perlambatan produksi biogas pada hari ke 26 dengan rata-rata total produksi 12.412,5 mL untuk limbah tanaman jagung yang diberikan thermal pre- treatment selama 15 menit, dan 12.310 mL untuk limbah tanaman jagung yang diberikan thermal pre-treatment selama 25 menit, sedangkan limbah tanaman jagung yang tidak diberikan pre-treatment menghasilkan produksi biogas sebesar 12.557 mL pada hari ke 26. Produksi biogas harian tertinggi terjadi pada substrat yang diberikan thermal pre-treatment 25 menit, dengan produksi biogas tertinggi pada hari ke 9 dengan rata-rata produksi sebesar 915 mL. Substrat yang diberikan thermal pre-treatment 15 menit juga memproduksi biogas jauh lebih tinggi (772,5 mL) pada hari ke 9 jika dibandingkan dengan substrat tanpa diberikan pre-treatment yang hanya memproduksi biogas sebesar 405 mL. Data hasil penelitian menunjukkan bahwa limbah tanaman jagung yang diberikan thermal pre-treatment memperoleh biogas yield lebih tinggi dari pada yang tidak diberikan pre-treatment dimana 670,39 mL/g volatile solids untuk thermal pre- treatment 15 menit, 690,65 mL/g volatile solids untuk thermal pre-treatment 25 menit dan 456,37 mL/g volatile solids untuk limbah tanaman jagung yang tidak diberikan pre-treatment.Kata kunci: Thermal pre-treatment, limbah tanaman jagung, anaerobik digesi, biogas


2018 ◽  
Vol 37 (1) ◽  
pp. 33-46
Author(s):  
Edwir N. Richard Aloyce ◽  
Aloyce W. Mayo ◽  
Richard J. Kimwaga

Fruits are susceptible to mechanical damages during their transfer to the markets if they are not packed well in containers. Hence fruits wastes are generated in large quantities and because of their organic nature they decompose, which leads to environmental problems. The objective of this research was to quantify and characterize the fruits wastes generated from the Ubungo Urafiki Market in Ubungo Municipality and to establish the potential treatment of these wastes by anaerobic digestion. The data were collected in the field to establish the characteristics quantity of wastes generated in order to determine the potential degradation of fruit wastes using anaerobic digestion process. The market receives seven main kinds of fruits including pineapples, mangoes, water melons, avocados, oranges; paw paws and ripe bananas, which generate about 4.85 tons of fruit wastes per day. The leading fruits with higher percentage of wastes were water melons and oranges, which generated about 800 kg/day and 797 kg/day, respectively. The results of batch plants experiments showed that the reactor with fruit waste-cattle manure-wood ash mixtures had a maximum biogas yield of 34.2 liters while the reactor with fruit wastes-mixtures had lowest biogas yields of 0.1 liters. The reactor with fruit waste- wood ash mixtures had high volatile solid and total solid removal efficiencies of 8.0% and 14.3%, respectively. For the maximization of biogas production wood ash was recommended in order to raise the pH value of the fruit wastes. The batch reactor used in this study was limiting pH control and therefore activities of methanogenic bacteria. It is recommended to adopt a semi continuous or continuous reactor in order to limit excessive production of organic acids, which are responsible for inhibition of biogas production.


2019 ◽  
Vol 8 (3) ◽  
pp. 6269-6273

Bananas are tropical fruits mostly eaten in Malaysia. The banana peels are high in organic, and putrescible caused the odour and leachate problem where it has been a dump. In practice, banana peels considered as a waste product that has been combined with municipal solid waste and dumped into the landfills. However, banana peels are bountiful in organic matter and high with moisture content. Thus, it could be a convincing substrate for biogas production through anaerobic digestion so that the major concerns of environmental protection is achieved aside from producing energy in a sustainable way. Therefore, this study was initiated to estimate the ultimate methane yield from the unripe banana peel (UBP) and ripe banana peel (RBP). Besides that, the assessment on the kinetics of the methane production from UBP and RBP is conducted using Modified Gompertz and first-order kinetic modelling. In this study, the anaerobic digestibility of banana peels measured in a batch reactor for 25 days each fed by UBP and RBP. The batch reactors operated at an inoculum to substrate ratio (I/S) of 1.0 and at a mesophilic temperature (37°C). The ultimate methane yields from UBP and RBP digestion were 847.57mLCH4 /gVS and 1405.31mLCH4 /gVS, respectively. The higher bioavailability (in term of COD, and solid) in RBP resulted in the higher methane production rate. Two first-order and modified Gompertz kinetic models were compared for the prediction of organic degradation, and the results indicated that the first-order kinetic model of the RBP fitted the experiment best. It concluded that ripe banana peels are the most preferable feedstock for the anaerobic digestion.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5423
Author(s):  
Margarita Andreas Dareioti ◽  
Aikaterini Ioannis Vavouraki ◽  
Konstantina Tsigkou ◽  
Michael Kornaros

The growing interest in processes that involve biomass conversion to renewable energy, such as anaerobic digestion, has stimulated research in this field in order to assess the optimum conditions for biogas production from abundant feedstocks, like agro-industrial wastes. Anaerobic digestion is an attractive process for the decomposition of organic wastes via a complex microbial consortium and subsequent conversion of metabolic intermediates to hydrogen and methane. The present study focused on the exploitation of liquid cow manure (LCM) and cheese whey (CW) as noneasily and easily biodegradable sources, respectively, using continuous stirred-tank reactors for biogas production, and a comparison was presented between single- and two-stage anaerobic digestion systems. No significant differences were found concerning LCM treatment, in a two-stage system compared to a single one, concluding that LCM can be treated by implementing a single-stage process, as a recalcitrant substrate, with the greatest methane production rate of 0.67 L CH4/(LR·d) at an HRT of 16 d. On the other hand, using the easily biodegradable CW as a monosubstrate, the two-stage process was considered a better treatment system compared to a single one. During the single-stage process, operational problems were observed due to the limited buffering capacity of CW. However, the two-stage anaerobic digestion of CW produced a stable methane production rate of 0.68 L CH4/(LR·d) or 13.7 L CH4/Lfeed, while the total COD was removed by 76%.


2004 ◽  
Vol 49 (10) ◽  
pp. 163-169 ◽  
Author(s):  
J. la Cour Jansen ◽  
C. Gruvberger ◽  
N. Hanner ◽  
H. Aspegren ◽  
 Svärd

Anaerobic digestion of sludge has been part of the treatment plant in Malmö for many years and several projects on optimisation of the digestion process have been undertaken in full scale as well as in pilot scale. In order to facilitate a more sustainable solution in the future for waste management, solid waste organic waste is sorted out from households for anaerobic treatment in a newly built city district. The system for treatment of the waste is integrated in a centralised solution located at the existing wastewater treatment plant. A new extension of the digester capacity enables separate as well as co-digestion of sludge together with urban organic waste from households, industry, restaurants, big kitchens, food stores, supermarkets, green markets etc. for biogas production and production of fertiliser. Collection and pre-treatment of different types of waste are in progress together with examination of biogas potential for different types of organic waste. Collection of household waste as well as anaerobic digestion in laboratory and pilot scale has been performed during the last year. It is demonstrated that organic household waste can be digested separately or in combination with sludge. In the latter case a higher biogas yield is found than should be expected from digestion of the two materials separately. Household waste from a system based on collection of organic waste from grinders could be digested at mesophilic conditions whereas digestion failed at thermophilic conditions.


Sign in / Sign up

Export Citation Format

Share Document