scholarly journals Analysis of the Dynamic Response of the Mechanism of Conventional Sucker rod Pumping Units

2020 ◽  
Vol 71 (1) ◽  
pp. 395-399
Author(s):  
Dorin Badoiu ◽  
Georgeta Toma

In the kinetostatic study of the mechanism of the sucker rod pumping units, the cinematic motion parameters of the elements are considered to be known, assuming that the cranks have a constant angular velocity imposed by the operating functioning conditions of the pumping unit. The paper analyzes the dynamic response of the mechanism of these pumping units, which implies the determination of the variation of the angular acceleration of the cranks during the operating cinematic cycle. A series of results regarding the determination of the variation of the angular acceleration of the cranks during the cinematic cycle in the case of the mechanism of a C-640D-305-120 pumping unit are presented. The obtained results are checked by comparing the experimental curves of variations of the acceleration at the polished rod with those obtained by simulation using a computer program developed by the authors in which the angular acceleration of the cranks was taken into consideration.

Author(s):  
Guixi Li ◽  
Rujian Ma ◽  
Jungang Wang

The dynamic performance of hydraulic beam pumping units was analyzed in this paper by using the theory of mechanical vibrations. The house-head movement of the pumping unit is mainly uniform, except the alternation period of upper- and down-strokes. Under the action of the house-head movement, the vibration of the system, the sucker-rod and, furthermore, the dynamic stress will be induced. The results indicate that the movement of the downhole pump includes two parts. One is the movement following the horse-head. The other is the dynamic response excited by the support movement. When the parameters of the system are selected reasonably, over-stroke of the pump will appear. This is because the movement of the hydraulic piston obeys a particular law. The maximum displacement increases, and the maximum dynamic stress decreases with depth. The changing of maximum dynamic stress with depth obeys quadratic law.


Author(s):  
V. A. Manakhov ◽  
A. N. Tsvetkov

TARGET. The purpose of this work is to develop a method for diagnostics of equipment of sucker rod pumping units (SRPU) during operation according to the parameters of the wattmetrogram. A wattmetering module is used as a measuring element, the developed software in the MatLab software package serves as a tool for processing vibration signals. The technical condition of the sucker rod pumping unit is analyzed by the parameters of the wattmetrogram and the amplitude spectra of the object under study, formed using the fast Fourier transform procedure in the MatLab software environment.METHODS. The wattmetering method allows you to control the sucker rod-pumping unit during its operation under voltage. This control method is highly accurate, sensitive to developing defects, and allows the use of computer technologies for signal processing and analysis.RESULTS. The wattmetering method is fully disclosed. The construction of the spectrum is considered. The relationship between the wattmetrogram and the dynamogram has been established. The removal and evaluation of experimental data from the operating sucker-rod pumping unit during its operation was carried out. A wattmetrogram and a dynamogram were built, a spectrum was also built, which showed the presence of defects in this installation.CONCLUSION. This method of wattmetering with the MatLab software allows you to monitor the technical condition of the sucker rod pumping unit according to the amplitude-frequency characteristics of the wattmetrogram parameters.


2019 ◽  
Vol 70 (7) ◽  
pp. 2477-2480
Author(s):  
Dorin Badoiu

Establishing and then solving the movement equation of the mechanism of the conventional sucker rod pumping units allows determining the variation on the cinematic cycle of the angular speed of the cranks as a dynamic response to the motor and resistant actions on the component elements. The evaluation as accurate as possible of the dynamic response depends on a more precise determination of the variation on the cinematic cycle of the synthesis parameters that occur in the movement equation of the mechanism of the pumping units. In the paper is established the movement equation of the mechanism of the conventional pumping units and are presented a series of results regarding the variation on the cinematic cycle of some synthesis parameters in the case of the mechanism of a C-640D-305-120 pumping unit. Experimental records have been processed with the Total Well Management program and the simulations have been performed with a computer program developed by the author using the Maple programming environment.


Author(s):  
V. A. Manakhov ◽  
A. N. Tsvetkov

TARGET. The purpose of this work is to develop a method for diagnostics of equipment of sucker rod pumping units (SRPU) during operation according to the parameters of the wattmetrogram. A wattmetering module is used as a measuring element, the developed software in the MatLab software package serves as a tool for processing vibration signals. The technical condition of the sucker rod pumping unit is analyzed by the parameters of the wattmetrogram and the amplitude spectra of the object under study, formed using the fast Fourier transform procedure in the MatLab software environment.METHODS. The wattmetering method allows you to control the sucker rod-pumping unit during its operation under voltage. This control method is highly accurate, sensitive to developing defects, and allows the use of computer technologies for signal processing and analysis.RESULTS. The wattmetering method is fully disclosed. The construction of the spectrum is considered. The relationship between the wattmetrogram and the dynamogram has been established. The removal and evaluation of experimental data from the operating sucker-rod pumping unit during its operation was carried out. A wattmetrogram and a dynamogram were built, a spectrum was also built, which showed the presence of defects in this installation.CONCLUSION. This method of wattmetering with the MatLab software allows you to monitor the technical condition of the sucker rod pumping unit according to the amplitude-frequency characteristics of the wattmetrogram parameters.


2014 ◽  
Vol 10 ◽  
pp. 95-101
Author(s):  
A.S. Topolnikov

The paper presents the results of theoretical modeling of joined movement of pump rods and plunger pump and multiphase flow in a well for determination of dynamic loads on the polished rod of pumping unit. The specificity of the proposed model is the possibility of taking into account for complications in rod pump operating, such as leakage in valve steam, presence of gas and emulsion, incorrect fitting of plunger inside the cylinder pump. The satisfactory agreement of results of the model simulation with filed measurements are obtained.


2018 ◽  
Vol 69 (11) ◽  
pp. 3060-3063
Author(s):  
Dorin Badoiu ◽  
Georgeta Toma

In the paper are analyzed the correlations between the experimental results obtained for the instantaneous rotation speed of the cranks shaft of a conventional sucker rod pumping installation and the speed and the acceleration at the end of the polished rod. The correlations have been established by analyzing the kinematics of the mechanism of the sucker rod pumping unit. The experimental records have been processed with the program Total Well Management. A computer program for performing the simulations has been developed by the authors using Maple programming environment.


Author(s):  
Ala E. Omrani ◽  
Matthew A. Franchek ◽  
Behrouz Ebrahimi ◽  
Mete Mutlu ◽  
Karolos Grigoriadis

Pumping unit efficiency is highly disturbed by the presence of gas influx reducing the productivity and inducing unpredictable system response due to the change of its intrinsic properties such as the natural frequency. A poor estimation of those properties may affect the on-field crew and system safety as well as the production rate. The purpose of this paper is to construct a hydromechanical model describing the coupled multiphase flow-pumping unit system dynamics and to develop a procedure to control the pumping speed for safety assurance and oil production maximization. A coupled mechanical-multiphase flow model capturing the interplay between the gas void fraction (GVF) and the driving harmonic force of the pumping unit is developed. Specifically, the predicted downhole pressure is used to determine the sucker rod effective load. Consequently, a reduced-order model, capturing the dynamics of the sucker rod, is used to estimate the saddle bearings axial displacements which are function of polished rod loading. An error-driven adaptation using the difference between presumed bearing displacement with known GVF and the predicted bearing displacement from the proposed multiphysics model is employed to estimate the unknown downhole GVF. The obtained results prove that the adaptation allows an accurate evaluation of the pumped fluid's GVF, thereby circumventing the need for a costly and inaccurate measurement of the two-phase flow gas fraction. Based on this estimation, a control strategy is then proposed to regulate the pump speed while avoiding the resonance frequency of the sucker-rod system.


2015 ◽  
Vol 743 ◽  
pp. 828-835 ◽  
Author(s):  
Bing Li ◽  
Bing Sun ◽  
C.F. Chen ◽  
X.J. Jiao ◽  
S.Y. Zhang ◽  
...  

Golf has become an increasingly popular sport. Determination of motion parameters of golf<br />ball can give quantitative suggestion for players. This paper introduces the principles of determination<br />based on Doppler radar. The parameters of golf motion to be measured include velocity, angle, spin<br />angular velocity and position. A golf realtime tracking system is designed with one transmitting antenna<br />and three receiving antennas in this paper. Simulations validate the feasibility and high accuracy<br />of this system. This system makes referential significance for golf realtime tracking system.


Sign in / Sign up

Export Citation Format

Share Document