Effects of resolving stagnation and promoting granulation therapy on expressions of Bax and Bcl-2 in granulation tissue of diabetic rats during wound healing

2007 ◽  
Vol 5 (6) ◽  
pp. 661-664 ◽  
Author(s):  
Fulun Li
2002 ◽  
Vol 16 (4) ◽  
pp. 293-298 ◽  
Author(s):  
Solange Maria de Almeida ◽  
Rívea Inês Ferreira ◽  
Frab Norberto Bóscolo

The aim of the present experimental research was to investigate the effects of electron irradiation on the collagen content and on the organization of the granulation tissue of skin, in diabetic rats. In this study, 48 Wistar rats were assigned to 4 groups: control, irradiated, diabetic and irradiated diabetic. First, diabetes mellitus was induced in the last two groups, by means of a single intravenous injection of streptozotocin. Fifteen days later, all animals underwent a surgery in order to create an excisional wound on their anterior dorsal skin. On the third post-operative day, only an approximately 1-cm-wide area around the wounds was exposed to 1 Gy of 6 MeV electron beam radiation, which was delivered in a single dose. Wound healing was examined by means of polarized light microscopy at 4-, 7-, 13- and 21-day time intervals after wounding. Based upon an essentially qualitative evaluation, it was possible to conclude that local electron irradiation and diabetes' associated dysfunctions caused a decrease in the collagen content of newly-formed tissue, which was more pronounced in irradiated diabetic animals. The macromolecular organization of granulation tissue was delayed in irradiated, diabetic and irradiated diabetic animals, in relation to what was observed in control animals.


Author(s):  
Reza Tayfeh-Ebrahimi ◽  
Amir Amniattalab ◽  
Rahim Mohammadi

Wound healing is interaction of a complex cascade of cellular/biochemical actions leading to restoration of structural and functional integrity with regain of injured tissues strength. This study was aimed at evaluation of application of ethanolic extract of propolis-loaded poly(-lactic-co-glycolic acid) nanoparticles (EEP-PLGA NPs) on wound healing in diabetic rats. Sixty rats were randomized into four groups of 15 rats each: In control group (Control) diabetic wound was treated with normal saline. In Carrier 1 group diabetic wound was treated with PLGA nanoparticles based solution. In Carrier 2 group the diabetic wound was treated with EEP. In Treatment group animals received EEP-PLGA NPs on the wound. Wound size was measured on 7, 14 and 21 days after surgery. The expression of p53, bcl-2, Caspase III, were evaluated using reverse-transcription PCR and Immunohistochemical staining. The Treatment group had significantly reduced the wound size compared to other groups ( P = 0.001). histological and morphometric studies, and mean rank of the qualitative studies demonstrated that there was significant difference between Treatment group and other groups ( P < .05). Observations demonstrated that ethanolic extract of propolis-loaded PLGA nanoparticles significantly shortened the inflammatory phase and accelerated the cellular proliferation. Accordingly, the animals in Treatment group revealed significantly ( P < .05) higher fibroblast distribution/one mm2 of wound area and rapid re epithelialization. The mRNA levels of bcl-2, p53 and caspase III were remarkably ( P < .05) higher in Treatment group compared to control and animals. The immunohistochemical analyzes confirmed the RT-PCR findings. EEP-PLGA NPs offered potential advantages in wound healing acceleration and improvement through angiogenesis stimulation, fibroblast proliferation and granulation tissue formation in early days of healing phases, acceleration in diabetic wound repair associated with earlier wound contraction and stability of damaged area by rearrangement of granulation tissue and collagen fibers.


1998 ◽  
Vol 12 (1) ◽  
pp. 144-148 ◽  
Author(s):  
N.S. Ramamurthy ◽  
A.J. Kucine ◽  
S.A. McClain ◽  
T.F. McNamara ◽  
L.M. Golub

Delayed wound healing is one of the complications of diabetes mellitus, exhibited by increased wound collagenase and decreased granulation tissues. The current study compared wound healing in normal and diabetic rats, and the effects of topically applied 1 % or 3% concentrations of chemically modified tetracycline-2 (CMT-2) on 6-mm circular full-thickness skin wounds healed by secondary intention. On day 7 after wounding, tissues were removed for biochemical analysis and histology. The wound granulation tissue hydroxyproline was less in the untreated diabetic rat with increased collagenase and gelatinase. Treating the diabetic rat wounds with 3% CMT-2 increased the wound hydroxyproline and decreased activities of gelatinase and collagenase. There was a delay in wound filling by granulation tissue in diabetic rats. In CMT-2-treated diabetic rats, the volume of granulation tissue was greater than that in untreated diabetic rats. CMT-2 appears to normalize wound healing in diabetic rats and may be a valuable adjunct in the treatment of chronic wounds.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Surya Bhan ◽  
Rahul Mitra ◽  
A. K. Arya ◽  
H. P. Pandey ◽  
K. Tripathi

Uncontrolled blood sugar is a major cause of vascular complications and delayed wound healing in diabetes mellitus. During wound healing process, normally, apoptosis is responsible for events such as removal of inflammatory cells and evolution of granulation tissue into scar which occur during the late phase of wound healing. Early apoptosis can lead to abnormal wound healing by removing granulation tissue including fibroblast, endothelial cell, and small vessels. To determine the role of apoptosis in association with hyperglycemia in diabetic wound healing, apoptosis-related intracellular marker such as expression of Bcl-2 protein by immunohistochemistry and normal histology has been studied. Histological findings show higher level of apoptosis and diminished granulation tissue formation in diabetic rats wounds along with minimal expression of Bcl-2 in diabetic rats wounds when compared with nondiabetic rats wounds. It can be concluded from this study that elevated blood sugar level may be associated with increased apoptosis and the least expression of Bcl-2 protein which might cause deregulation of the wound healing processes in streptozotocin-induced diabetic rats.


2021 ◽  
Vol 91 (3) ◽  
pp. 287-296
Author(s):  
Azad A. Ahanger ◽  
◽  
Shahid Prawez ◽  
Abdul Shakoor ◽  
Wasif Ahmad ◽  
...  

Hemin may be of potential therapeutic value in wound healing management in diabetics. It is an inducer of heme oxygenase-1, an enzyme which degrades heme and participates in cellular protection against oxidative stress, inflammation and apoptosis. Thus, in the present study, hemin (0.5%) was applied topically over excision wounds, and its therapeutic effect in wound healing evaluated in diabetic rats. Topical hemin application significantly increased the percentage of wound contraction on day 2 in diabetic rats, however, povidone-iodine did the same on day 7 compared to the diabetic control. A significant increase in hydroxyproline and glucosamine content was found on day 14 in the hemin treated wounds of diabetic rats vs. the diabetic control. The histology of the hemin treated rats was in agreement with the cellular proliferation and collagen synthesis in granulation tissue. Hemin significantly increases cytokine IL-10 and decreases TNF-α in the granulation tissue of the healed wounds of diabetic rats. The finding showing the pro-healing effects of hemin was endorsed by inhibition of mRNA expression of pro-inflammatory cytokine TNF-α and adhesion molecule ICAM-1, and up-regulation of anti-inflammatory cytokine IL-10 mRNA. Hence, topical hemin application (i) helps in early and fast wound contraction (ii) enhances the hydroxyproline and glucosamine content of wounds and (iii) modulates pro-healing mRNA expression of cytokines.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 643-P ◽  
Author(s):  
YANFEI HAN ◽  
LINDONG LI ◽  
YANJUN LIU ◽  
YOU WANG ◽  
CHUNHUA YAN ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 1872
Author(s):  
Hamideh Afzali ◽  
Mohammad Khaksari ◽  
Sajad Jeddi ◽  
Khosrow Kashfi ◽  
Mohammad-Amin Abdollahifar ◽  
...  

Impaired skin nitric oxide production contributes to delayed wound healing in type 2 diabetes (T2D). This study aims to determine improved wound healing mechanisms by acidified nitrite (AN) in rats with T2D. Wistar rats were assigned to four subgroups: Untreated control, AN-treated control, untreated diabetes, and AN-treated diabetes. AN was applied daily from day 3 to day 28 after wounding. On days 3, 7, 14, 21, and 28, the wound levels of vascular endothelial growth factor (VEGF) were measured, and histological and stereological evaluations were performed. AN in diabetic rats increased the numerical density of basal cells (1070 ± 15.2 vs. 936.6 ± 37.5/mm3) and epidermal thickness (58.5 ± 3.5 vs. 44.3 ± 3.4 μm) (all p < 0.05); The dermis total volume and numerical density of fibroblasts at days 14, 21, and 28 were also higher (all p < 0.05). The VEGF levels were increased in the treated diabetic wounds at days 7 and 14, as was the total volume of fibrous tissue and hydroxyproline content at days 14 and 21 (all p < 0.05). AN improved diabetic wound healing by accelerating the dermis reconstruction, neovascularization, and collagen deposition.


2021 ◽  
Vol 22 (12) ◽  
pp. 6267
Author(s):  
Meng-Jin Lin ◽  
Mei-Chun Lu ◽  
Hwan-You Chang

The goals of this study are to develop a high purity patented silk fibroin (SF) film and test its suitability to be used as a slow-release delivery for insulin-like growth factor-1 (IGF-1). The release rate of the SF film delivering IGF-1 followed zero-order kinetics as determined via the Ritger and Peppas equation. The release rate constant was identified as 0.11, 0.23, and 0.09% h−1 at 37 °C for SF films loaded with 0.65, 6.5, and 65 pmol IGF-1, respectively. More importantly, the IGF-1 activity was preserved for more than 30 days when complexed with the SF film. We show that the IGF-1-loaded SF films significantly accelerated wound healing in vitro (BALB/3T3) and in vivo (diabetic mice), compared with wounds treated with free IGF-1 and an IGF-1-loaded hydrocolloid dressing. This was evidenced by a six-fold increase in the granulation tissue area in the IGF-1-loaded SF film treatment group compared to that of the PBS control group. Western blotting analysis also demonstrated that IGF-1 receptor (IGF1R) phosphorylation in diabetic wounds increased more significantly in the IGF-1-loaded SF films group than in other experimental groups. Our results suggest that IGF-1 sustained release from SF films promotes wound healing through continuously activating the IGF1R pathway, leading to the enhancement of both wound re-epithelialization and granulation tissue formation in diabetic mice. Collectively, these data indicate that SF films have considerable potential to be used as a wound dressing material for long-term IGF-1 delivery for diabetic wound therapy.


Sign in / Sign up

Export Citation Format

Share Document