scholarly journals Stabilization of Aqueous Dispersions of Inorganic Microparticles Under Mechanical Activation

2021 ◽  
Vol 16 ◽  
pp. 127-133 ◽  
Author(s):  
A. V. Perchenok ◽  
E. V. Suvorova ◽  
A. A. Farmakovskaya ◽  
V. Kohlert

The stability of aqueous dispersed systems of TiO2 and Fe2O3 microparticles in the presence of a water-soluble polymer - ethylhydroxyethylcellulose (EHEC) - has been studied under the condition of using two methods of mechanoactivation of the pigment surface - processing them in a disintegrator and in an ultrasonic field. It is shown that in the absence of a polymer stabilizer, an intense effect on aqueous dispersed systems of pigments leads to rapid coagulation of particles. In the presence of EHEC, a small stabilizing effect is observed, which is significantly enhanced when processing dispersed systems in a disintegrator and in an ultrasonic field. In this case, the stability of dispersed systems depends little on the method of mechanoactivation of their surface, but significantly depends on the duration of the intense exposure.

2013 ◽  
Vol 829 ◽  
pp. 818-824
Author(s):  
Sahar Kafashi ◽  
Ramin Taghdimi ◽  
Gholamreza Karimi

This study was aimed to investigate the rheological properties and the possibility of nano(Na, Ca )- bentonites nanoproducts to meet the required drilling mud properties. Sepiolite (Sp) and the mixture of 2% nanoNaB with 1% Sp were collected and prepared from Irans oil Company (NIOC). The nanoclay performance evaluation involved the experimental tests of the rheological properties, filtration and gel strength. According to the results obtained from flow properties tests for the mixture, it was indicated that the mixture was not adequate to be a suitable drilling fluid. The main objective was to make stable dispersions with nanobentonite and sepiolite by using a water soluble polymer as stabilizer. The changes in the rheological properties of bentonite were investigated at various concentrations of polyvinyl alcohol (PVA) to discover the stability of the dispersions. The standard API tests were applied for drilling fluid to determine the properties of dispersions.


2020 ◽  
Vol 90 (5-6) ◽  
pp. 439-447 ◽  
Author(s):  
Andrew Hadinata Lie ◽  
Maria V Chandra-Hioe ◽  
Jayashree Arcot

Abstract. The stability of B12 vitamers is affected by interaction with other water-soluble vitamins, UV light, heat, and pH. This study compared the degradation losses in cyanocobalamin, hydroxocobalamin and methylcobalamin due to the physicochemical exposure before and after the addition of sorbitol. The degradation losses of cyanocobalamin in the presence of increasing concentrations of thiamin and niacin ranged between 6%-13% and added sorbitol significantly prevented the loss of cyanocobalamin (p<0.05). Hydroxocobalamin and methylcobalamin exhibited degradation losses ranging from 24%–26% and 48%–76%, respectively; added sorbitol significantly minimised the loss to 10% and 20%, respectively (p < 0.05). Methylcobalamin was the most susceptible to degradation when co-existing with ascorbic acid, followed by hydroxocobalamin and cyanocobalamin. The presence of ascorbic acid caused the greatest degradation loss in methylcobalamin (70%-76%), which was minimised to 16% with added sorbitol (p < 0.05). Heat exposure (100 °C, 60 minutes) caused a greater loss of cyanocobalamin (38%) than UV exposure (4%). However, degradation losses in hydroxocobalamin and methylcobalamin due to UV and heat exposures were comparable (>30%). At pH 3, methylcobalamin was the most unstable showing 79% degradation loss, which was down to 12% after sorbitol was added (p < 0.05). The losses of cyanocobalamin at pH 3 and pH 9 (~15%) were prevented by adding sorbitol. Addition of sorbitol to hydroxocobalamin at pH 3 and pH 9 reduced the loss by only 6%. The results showed that cyanocobalamin was the most stable, followed by hydroxocobalamin and methylcobalamin. Added sorbitol was sufficient to significantly enhance the stability of cobalamins against degradative agents and conditions.


2011 ◽  
Vol 8 (2) ◽  
pp. 33
Author(s):  
Norfaezah Mazalan ◽  
Mazatulikhma Mat Zain ◽  
Nor Saliyana Jumali ◽  
Norhanim Mohalid ◽  
Zurina Shaameri ◽  
...  

Recently, research and development in the field of drug delivery systems (DDS) facilitating site-specific therapy has reached significant progression. DDS based on polymer micelles, coated micro- and nanoparticles, and various prodrug systems including water-soluble polymer have been prepared and extensively studied as novel drugs designed for cancer chemotherapy and brain delivery. Since polymers are going to be used in human, this study has the interest of testing two types of polymer, polyimides (PI) and polyphenylenevinylene (PPV) on neuronal cells. The objective of this study was to determine the possible neurotoxicity and potential neuroprotective effects of PI and PPV towards SH-SY5Y neuronal cells challenged by hydrogen peroxide (H2O2) as an oxidant. Cells were pretreated with either PI or PPV for 1 hour followed by incubation for 24 hour with 100 µM of H2O2. MTS assay was used to assess cell viability. Results show that PI and PPV are not harmful within the concentration up to 10 µM and 100 µM, respectively. However, PI and PPV do not protect neuronal cells against toxicity induced by H2O2 or further up the cell death.


2020 ◽  
Author(s):  
Katsuya Maruyama ◽  
Takashi Ishiyama ◽  
Yohei Seki ◽  
Kounosuke Oisaki ◽  
Motomu Kanai

A novel Tyr-selective protein bioconjugation using the water-soluble persistent iminoxyl radical is described. The conjugation proceeded with high Tyr-selectivity and short reaction time under biocompatible conditions (room temperature in buffered media under air). The stability of the conjugates was tunable depending on the steric hindrance of iminoxyl. The presence of sodium ascorbate and/or light irradiation promoted traceless deconjugation, restoring the native Tyr structure. The method is applied to the synthesis of a protein-dye conjugate and further derivatization to azobenzene-modified peptides.


2021 ◽  
Vol 8 (1) ◽  
pp. 9
Author(s):  
Laura Brelle ◽  
Estelle Renard ◽  
Valerie Langlois

A novel generation of gels based on medium chain length poly(3-hydroxyalkanoate)s, mcl-PHAs, were developed by using ionic interactions. First, water soluble mcl-PHAs containing sulfonate groups were obtained by thiol-ene reaction in the presence of sodium-3-mercapto-1-ethanesulfonate. Anionic PHAs were physically crosslinked by divalent inorganic cations Ca2+, Ba2+, Mg2+ or by ammonium derivatives of gallic acid GA-N(CH3)3+ or tannic acid TA-N(CH3)3+. The ammonium derivatives were designed through the chemical modification of gallic acid GA or tannic acid TA with glycidyl trimethyl ammonium chloride (GTMA). The results clearly demonstrated that the formation of the networks depends on the nature of the cations. A low viscoelastic network having an elastic around 40 Pa is formed in the presence of Ca2+. Although the gel formation is not possible in the presence of GA-N(CH3)3+, the mechanical properties increased in the presence of TA-N(CH3)3+ with an elastic modulus G’ around 4200 Pa. The PHOSO3−/TA-N(CH3)3+ gels having antioxidant activity, due to the presence of tannic acid, remained stable for at least 5 months. Thus, the stability of these novel networks based on PHA encourage their use in the development of active biomaterials.


2021 ◽  
Author(s):  
Aranee Pleng Teepakakorn ◽  
Makoto Ogawa

Water-induced self-healing materials were prepared by the hybridization of a water-soluble polymer, poly(vinyl alcohol), with a smectite clay by mixing in an aqueous media and subsequent casting. Without using chemical...


2021 ◽  
Vol 901 ◽  
pp. 98-103
Author(s):  
Sunee Channarong ◽  
Parapat Sobharaksha ◽  
Chanchai Sardseangjun ◽  
Panipak Vasvid

Abstract The aim of this study was to fabricate curcumin-loaded polymeric mixed micelle which was a new nanocarrier of therpeutic agent for skin uses. Curcumin was extracted from dried turmeric rhizomes using ethanol and recrystallized. The purity of curcumin was 79±3.6 %w/w. Six curcumin-loaded polymeric micelles (PM1-PM6) were prepared by simple dissolution method using poloxamer 407 (5% and 10%) as a main core structure. PEG-40 hydrogenated castor oil (PEG-40HCO) was incorporated at two percentages (2.5% and 5.0%) to study the effect on the nanoparticle characteristics. The average particle sizes of PM1-PM6 were in the range of 33.3±6.6 nm to 171.3±52.8 nm. The entrapment efficiency and the loading capacity of curcumin were in the range of 47.45%-77.35% and 0.048%w/w-0.078%w/w, respectively. When PEG-40HCO was incorporated in to the polymeric micelles, the particle size decreased and the entrapment efficiency increased. Thus, PM4 and PM5 were selected for further study. Moisturizing antioxidant creams containing 0.005%w/w of curcumin loaded in PM4, PM5 and curcumin simply dissolved in propylene glycol (PG) were formulated. The resulted formulations showed good spreadability and good characteristics. After being subjected to accelerated test, all of the formulations remained with characteristic color, pH and showed no phase separation. The stability data showed that the moisturizing antioxidant creams were stable for the whole 3 months after storage at accelerated temperature (45°C/75%RH). The study demonstrated that polymeric mixed micelle spontaneously encapsulated a poorly water-soluble curcumin and increased the solubility up to 250 folds. The developed moisturizing cream containing 0.005%w/w of curcumin resulted a greenish-yellow color preparation. It had tolerable physicochemical properties based on curcumin content, pH and viscosity under the harsh condition. The cream also had satisfactory antioxidant activity, which can be regarded as an effective and acceptable therapeutic or skincare products for topical uses.


Sign in / Sign up

Export Citation Format

Share Document