Study of bactericide properties of MARZA-1 agent in laboratory conditions

2021 ◽  
pp. 33-38
Author(s):  
H.R. Gurbanov ◽  
◽  
M.B. Adygozelova ◽  
S.F. Ahmadov ◽  
S.M. Pashayeva ◽  
...  

Bactericide properties of MARZA-1 inhibitor were studied with regard to desulfovibrio-desulfuricans and desulfo-microbium sulfate-reducing bacteria. According to the results of experiments, the effect of MARZA-1 inhibitor on the quantity of sulfate-reducing bacteria cells and formation of biogenic hydrogen-sulfide in Postgate-B nutritional medium has been estimated. MARZA-1 agent showed high bactericide effect towards desulfovibrio-desulfuricans and sulfate-reducing bacteria of desulfo-microbium type. The comparison of results with both bacteria justified that the rate of SRB cell disruption in the medium with desulfovibrio-desulfurican bacteria in the concentration of 7 mg/l on the fifth-seventh days, and in desulfo-microbium bacteria is observed with 10 mg/l concentration of MARZA-1 agent on the seventh day.

2015 ◽  
Vol 6 (1) ◽  
pp. 40-44
Author(s):  
G. І. Zvir ◽  
O. М. Moroz ◽  
S. O. Hnatush

Objects of the study were sulfate-reducing bacteria Desulfovibrio desulfuricans ІМV К-6, isolated from Yavorivske lakе. This strain is kept in the collection of microorganisms at the Department of Microbiology of Ivan Franko National University. Bacteria were grown in the Kravtsov-Sorokin’s liquid medium with the following composition (g/l): Na2SO4 × 10H2O – 0.5, NaH2PO4 – 0.3, K2HPO4 – 0.5, (NH4)2SO4 – 0.2, MgSO4 × 7H2O – 0.1, C3H5O3Na – 2.0. The bacteria were grown for 10 days at 30 °C under anaerobic conditions. In order to study the sensitivity of the sulfate reducing bacteria to action of Uragan and Raundup herbicides, the cells of D. desulfuricans ІМV К-6 were grown at the concentrations of herbicides as follows: 0,28 mМ, 2,8 mМ (concentration recommended for use) and 5,6 mM. Biomass was determined by photometric method. Concentration of hydrogen sulfide in the culture medium was determined by photo-colorimetric method. Concentration of sulfate-ions in the medium was determined by turbidimetric method. Capacity of sulfate reducing bacteria D. desulfuricans ІМV K-6 to grow, reducing sulfates to hydrogen sulfide upon influence of Uragan and Raundup herbicides was studied. Accumulation of bacterial biomass in the control and upon influence of herbicides was the highest on the fourth-sixth day of cultivation, and after that the stationary growth phase began. It was shown that sulfate reducing bacteria upon influence of herbicides grew more intensively compared with the control. It was discovered that the level of biomass changed depending on the increasing concentration of Uragan or Raundup herbicides in the medium. Sulfate reducing bacteria D. desulfuricans ІМV K-6 could reduce sulfates to hydrogen sulfide in the presence of sulfates and organic compounds in the medium (dissimilatory sulfate reduction). Stimulatory influence of Uragan and Raundup on the dissimilatory sulfate reduction process of D. desulfuricans ІМВ К-6 has been discovered. The formation of hydrogen sulfide correlates with the usage of sulfatе ions. The capacity of sulfate reducing bacteria D. desulfuricans ІМV K-6 to grow, reducing sulfate ions to hydrogen sulfide upon influence of Uragan and Raundup may be caused by presence of inert components (sulfates) in these herbicides that can be used by microorganisms as electron acceptors during sulfate respiration. 


The Analyst ◽  
2015 ◽  
Vol 140 (6) ◽  
pp. 1772-1786 ◽  
Author(s):  
Zhi Guo ◽  
Guiqiu Chen ◽  
Guangming Zeng ◽  
Zhongwu Li ◽  
Anwei Chen ◽  
...  

The development of H2S fluorescence-sensing strategies and their potential applications in the determination of sulfate-reducing bacteria activity.


1994 ◽  
Vol 353 ◽  
Author(s):  
S. Fukunaga ◽  
H. Yoshikawa ◽  
K. Fujiki ◽  
H. Asano

AbstractThe active range ofDesulfovibrio desulfuricans. a species of sulfate-reducing bacteria, was examined in terms of pH and Eh using a fermenter at controlled pH and Eh. Such research is important because sulfate-reducing bacteria (SRB) are thought to exist underground at depths equal to those of supposed repositories for high-level radioactive wastes and to be capable of inducing corrosion of the metals used in containment vessels.SRB activity was estimated at 35°C, with lactate as an electron donor, at a pH range from 7 to 11 and Eh range from 0 to -380 mV. Activity increased as pH approached neutral and Eh declined. The upper pH limit for activity was between 9.9 and 10.3, at Eh of -360 to -384 mV. The upper Eh limit for activity was between -68 and -3 mV, at pH 7.1. These results show that SRB can be made active at higher pH by decreasing Eh, and that the higher pH levels of 8 to 10 produced by use of the buffer material bentonite does not suppress SRB completely.A chart was obtained showing the active range ofDesulfovibrio desulfuricansin terms of pH and Eh. Such charts can be used to estimate the viability of SRB and other microorganisms when the environmental conditions of a repository are specified.


Geofluids ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Qigen Deng ◽  
Tao Zhang ◽  
Fajun Zhao ◽  
Hao Wang ◽  
Jingping Yin

The salinity, chemical properties, and migration characteristics of groundwater in coal measures are the key factors that affect the generation, migration, and reservoir of hydrogen sulfide (H2S) in low-rank coal seams. Taking the Jurassic coal and rock strata in the southeastern margin of the Junggar basin as the research object, according to the hydrogeological characteristics of the coal measures, the region is divided into 4 hydrogeological units. The coalbed methane contains a large number of secondary biogas. Along the direction of groundwater runoff, the salinity and the pH value increase gradually. The salinity in the hydrogeological units is low; it is not conducive to the propagation of sulfate-reducing bacteria and the formation of hydrogen sulfide of the Houxia, the south of Manasi River, and Hutubi and Liuhuangou area, the western region of the Miquan. The high salinity center and depressions of low water level (hydrodynamic stagnation zone) in the hydrogeological unit of the Liuhuanggou and the Miquan are the main areas for the production and enrichment of H2S in the low-rank coal. The high salinity in water is formed by infiltration, runoff, and drought evaporation. At the same time, the deep confined water environment closed well; in conditions of hydrocarbon-rich, under the action of sulfate-reducing bacteria, bacterial sulfate reduction will occur and hydrogen sulfide formed. According to the circulation characteristics of water bearing H2S in the region, imbricate and single bevel two kind generation and enrichment mode of hydrogen sulfide under the action of hydrodynamic control. The solubility of hydrogen sulfide in pure water and solutions of NaCl and Na2SO4 with different molar concentrations was calculated. The H2S solubility of groundwater in coal measures of 4 hydrogeological units was estimated.


1973 ◽  
Vol 19 (3) ◽  
pp. 375-380 ◽  
Author(s):  
G. W. Skyring ◽  
P. A. Trudinger

ATP-sulfurylases, APS-reductases, and sulfite reductases (SO3−2 → S−2) have been detected by gel disc electrophoresis in 13 cultures of dissimilatory sulfate-reducing bacteria and their electrophoretic properties have been compared. With respect to these three enzymes only, the results were indicative of some interspecies and intergenus homologies. In the Desulfovibrio strains (except Desulfovibrio desulfuricans 8301 which does not contain desulfoviridin), the major sulfite reductase was electrophoretically coincident with desulfoviridin and, in the Desulfotomaculum strains, with a brown protein. Some distinct patterns of electrophoretically distinguishable forms of APS-reductase were found. Considerable electrophoretic variation was found among the ATP-sulfurylases.


1992 ◽  
Vol 40 (5) ◽  
pp. 593-600 ◽  
Author(s):  
M. A. M. Reis ◽  
J. S. Almeida ◽  
P. C. Lemos ◽  
M. J. T. Carrondo

2014 ◽  
Vol 1008-1009 ◽  
pp. 285-289 ◽  
Author(s):  
Chong Yang Gao ◽  
Ai Jie Wang ◽  
Yang Guo Zhao

Double-chambered microbial fuel cells (MFCs) were used to investigate the effect of sulfate and sulfate-reducing bacteria (SRB) on electricity generation by molybdate inhibition coupled with PCR-DGGE technique. Results showed that low influent sulfate (< 1470 mg/L) improved power density and voltage, while higher sulfate blocked the MFC efficiency. Molybdate inhibited the activity of SRB and consequently decreased MFC voltage and power density which confirmed some SRB were involved in the electricity generation. Microbial community analysis indicated thatDesulfovibrio desulfuricanscontributed to the electricity production and stability of MFC.


Sign in / Sign up

Export Citation Format

Share Document