scholarly journals Interaction of major genes predisposing to hepatocellular carcinoma with genes encoding signal transduction pathways influences tumor phenotype and prognosis

2008 ◽  
Vol 14 (43) ◽  
pp. 6601 ◽  
Author(s):  
Francesco Feo ◽  
Maddalena Frau ◽  
Rosa Maria Pascale

The study of phytochrome signalling has yielded a wealth of data describing both the perception of light by the receptor, and the terminal steps in phytochrome-regulated gene expression by a number of transcription factors. We are now focusing on establishing the intervening steps linking phytochrome photoactivation to gene expression, and the regulation and interactions of these signalling pathways. Recent work has utilized both a pharmacological approach in phototrophic soybean suspension cultures and microinjection techniques in tomato to establish three distinct phytochrome signal-transduction pathways: (i) a calcium-dependent pathway that regulates the expression of genes encoding the chlorophyll a/b binding protein ( CAB ) and other components of photosystem II; (ii) a cGMP-dependent pathway that regulates the expression of the gene encoding chalcone synthase ( CHS ) and the production of anthocyanin pigments; and (iii) a pathway dependent upon both calcium and cGMP that regulates the expression of genes encoding components of photosystem I and is necessary for the production of mature chloroplasts. To study the components and the regulation of phytochrome signal-transduction pathways, mutants with altered photomorphogenic responses have been isolated by a number of laboratories. However, with several possible exceptions, little real progress has been made towards the isolation of mutants in positive regulatory elements of the phytochrome signal-transduction pathway. We have characterized a novel phytochrome A (phyA)-mediated far-red light (FR) response in Arabidopsis seedlings which we are currently using to screen for specific phyA signal-transduction mutants.


2004 ◽  
Vol 3 (1) ◽  
pp. 221-231 ◽  
Author(s):  
Aneta Kaniak ◽  
Zhixiong Xue ◽  
Daniel Macool ◽  
Jeong-Ho Kim ◽  
Mark Johnston

ABSTRACT The yeast Saccharomyces cerevisiae senses glucose, its preferred carbon source, through multiple signal transduction pathways. In one pathway, glucose represses the expression of many genes through the Mig1 transcriptional repressor, which is regulated by the Snf1 protein kinase. In another pathway, glucose induces the expression of HXT genes encoding glucose transporters through two glucose sensors on the cell surface that generate an intracellular signal that affects function of the Rgt1 transcription factor. We profiled the yeast transcriptome to determine the range of genes targeted by this second pathway. Candidate target genes were verified by testing for Rgt1 binding to their promoters by chromatin immunoprecipitation and by measuring the regulation of the expression of promoter lacZ fusions. Relatively few genes could be validated as targets of this pathway, suggesting that this pathway is primarily dedicated to regulating the expression of HXT genes. Among the genes regulated by this glucose signaling pathway are several genes involved in the glucose induction and glucose repression pathways. The Snf3/Rgt2-Rgt1 glucose induction pathway contributes to glucose repression by inducing the transcription of MIG2, which encodes a repressor of glucose-repressed genes, and regulates itself by inducing the expression of STD1, which encodes a regulator of the Rgt1 transcription factor. The Snf1-Mig1 glucose repression pathway contributes to glucose induction by repressing the expression of SNF3 and MTH1, which encodes another regulator of Rgt1, and also regulates itself by repressing the transcription of MIG1. Thus, these two glucose signaling pathways are intertwined in a regulatory network that serves to integrate the different glucose signals operating in these two pathways.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Ewa Nowakowska-Zajdel ◽  
Urszula Mazurek ◽  
Malgorzata Stachowicz ◽  
Elzbieta Niedworok ◽  
Edyta Fatyga ◽  
...  

The aim of the study was to analyse genes typing with the use of the oligonucleotide microarray technique (HG-U133A, Affymetrix) differentiating colorectal cancer tissues from tissues assessed histopathologically as healthy ones among a panel of 91 mRNA of genes encoding proteins involved in activation of cellular signal transduction pathways by leptin. Frozen tumor specimens from 11 colon cancer patients in various stages of clinical progression of the disease in an I–IV stage scale according to the TNM staging were used in molecular tests. Among the genes participating in the cascade of signal transfer in cell activated by leptin, the following ones: AKT1, STAT3, MCL1 were qualified as differentiating stage I and II and VEGFC, CCNDI the encoding genes respectively as differentiating III and IV stage neoplasm. It is necessary to extend studies of analysis of cellular signal transduction pathways by leptin in colorectal cancer initiation and transformation processes.


Sign in / Sign up

Export Citation Format

Share Document