scholarly journals Best Practices of Oil and Gas Companies to Develop Gas Fields on the Arctic Shelf

2021 ◽  
pp. 30-44
Author(s):  
Luiza E. BRODT ◽  

The development of the hydrocarbon potential of the Arctic shelf is one of the priority tasks for Russia, forming the conditions for its strategic presence in the region. Russia's official energy documents stipulate the need to increase oil and gas production in the Arctic, including offshore production, to ensure the stable operation of the country's oil and gas complex in the long term. However, the development of hydrocarbon fields on the Arctic shelf is a serious technological challenge for the domestic oil and gas in-dustry. While offshore oil production in the Russian Arctic is already underway, natural gas production remains a promising future target. The article analyses the current gas projects on the Arctic shelf in terms of their technological complexity and unique solutions, and the strategies of operators to attract foreign participants to the project. We consider these in the contexts of technological issues, organizational features, securing foreign investment. The author believes that the provisions and conclusions of this study will help add to the comprehensive picture of the foreign oil and gas companies experience engaged in natural gas production on the Arctic shelf, which will minimise the errors and risks in the development of hydrocarbon resources on the Russian Arctic seas shelf.

Author(s):  
I. G. Mindel ◽  
B. A. Trifonov ◽  
M. D. Kaurkin ◽  
V. V. Nesynov

In recent years, in connection with the national task of developing the Arctic territories of Russia and the perspective increase in the hydrocarbon mining on the Arctic shelf, more attention is being paid to the study of seismicity in the Barents Sea shelf. The development of the Russian Arctic shelf with the prospect of increasing hydrocarbon mining is a strategically important issue. Research by B.A. Assinovskaya (1990, 1994) and Ya.V. Konechnaya (2015) allowed the authors to estimate the seismic effects for the northern part of the Barents Sea shelf (Novaya Zemlya region). The paper presents the assessment results of the initial seismic impacts that can be used to solve seismic microzoning problems in the areas of oil and gas infrastructure during the economic development of the Arctic territory.


2019 ◽  
Author(s):  
Ying Zhou ◽  
Huiting Mao ◽  
Barkley C. Sive

Abstract. Decadal trends in the annual fourth-highest daily maximum 8-hour average (A4DM8HA) ozone (O3) were studied over 2005–2015 for 13 rural/remote sites in the U.S. Intermountain West. No trends were observed in A4DM8HA O3 at two reference sites, which are located upwind of and thus minimally influenced by emissions from oil and natural gas (O&NG) basins. Trends, or a lack thereof, varied widely at other 11 sites in/near O&NG basins resulting from different controlling factors rather than a simplistic, uniform one. The decreasing trends at Mesa Verde (−0.76 ppbv/yr) and Canyonlands National Park (−0.54 ppbv/yr) were attributed to a 37 % decrease in natural gas production in the San Juan Basin and 35 % emission reductions in coal-fired electricity generation, respectively. The decreasing trend (−1.21 ppbv/yr) at Wind Cave National Park resulted from reduced solar radiation due to increasingly frequent precipitation weather. The lack of trends at remaining sites was likely caused by the increasing O&NG emissions and decreasing emissions from other activities. Wintertime O3 stagnant events were associated with the Arctic Oscillation (AO). Box model simulations suggested that both volatile organic compounds (VOCs) and nitrogen oxides emission reductions during negative AO years while VOC emission reductions alone in positive AO years could effectively mitigate high wintertime O3 within the O&NG basins. Our findings suggest that emissions from O&NG extraction likely played a significant role in shaping long-term trends in surface O3 near/within O&NG basins and hence warrant consideration in the design of efficient O3 mitigation strategies for the Intermountain West.


2020 ◽  
Vol 217 ◽  
pp. 04002
Author(s):  
Ksenia Derevtsova ◽  
Vladislav Ginevskii ◽  
Gleb Kataev ◽  
Semion Kim ◽  
Polina Veselova

The article tells about the risks of low-culture construction of oil facilities on the Arctic shelf. The long-term, practically neglected exploitation of the unique natural resources of the Russian North and the low culture of their development led in a number of its regions, including the waters of the Arctic seas with islands, to an emergency ecological situation - the partial and sometimes complete destruction of the fragile Arctic natural habitat of the small peoples of the North and the created cities and villages. Without proper environmental support, economic activities continue in the field of extraction, transportation and processing of natural resources. The progressive pollution of rivers and lakes leads to a qualitative depletion of water resources - a change in the composition of the waters of the Arctic Ocean. The danger of oil pollution of the marine environment is associated with plans for its production on the continental shelf of the Russian Federation. The oil and gas production complex in the Russian Arctic regions are being formed on the basis of already discovered fields and will develop as other promising fields are developed.


2021 ◽  
Author(s):  
Tatyana Ivanovna Lapteva ◽  
Lyudmila Anatolyevna Kopaeva ◽  
Marat Nabievich Mansurov ◽  
Vladimir Ivanovich Efremov ◽  
Viktor Nikolayevich Ilyuhin

Abstract The creation of an effective system of rescue support (the abbreviation ASO is adopted on the territory of the Russian Federation) in the implementation of the processes of oil and gas production and transportation in the Arctic seas of Russia is an urgent and difficult task. The feasibility of creating such a system for offshore oil and gas production facilities is due to the statistics of accidents and incidents at such facilities, as well as the fact that the Merchant Shipping Code of the Russian Federation, in essence, does not consider the applicability of the existing system of rescue operations on platforms that are exploring and developing mineral and other non-living resources the seabed and its bowels. The successful solution of numerous problems of rescue support, including the requirements for the quality of the system, indicators and criteria for the effectiveness of the operations carried out, can be significantly increased by using mathematical models that make it possible to identify patterns in the processes of performing urgent work, improve the quality of planning, and, consequently, the efficiency of management of various organizational systems. Applied in many areas of activity, the scientific direction "research of operations" is advisable to use when system generation of rescue support within the framework of improving the system of technical regulation of oil and gas enterprises. Determining the effectiveness of a purposeful process quantitatively will allow, on a scientific basis, with the involvement of modern mathematical methods, to solve the problem of increasing the effectiveness of the use of forces and means of the marine rescue support, including the functioning of the emergency support system in the mode of daily and emergency activities, as well as the preparation of the necessary forces and means. The novelty of the presented work lies in the application of the provisions of the theory and the apparatus of operations research to assessing the effectiveness of the system of the marine rescue support, which will further serve as a methodological basis for the development of a number of documents and provisions that are of practical importance: methods, requirements for the system of rescue support, documents in the field of control over the rescue system, etc.


2014 ◽  
Vol 16 (5) ◽  
pp. 954-969 ◽  
Author(s):  
R. A. Field ◽  
J. Soltis ◽  
S. Murphy

Air quality impacts from unconventional oil and gas development range from local to global scales impacting human health and climate.


2021 ◽  
Vol 9 (5) ◽  
pp. 528
Author(s):  
Amina Chanysheva ◽  
Alina Ilinova

The development of Arctic marine resources is currently the focus of the world’s largest oil and gas companies, which is due to the presence of significant hydrocarbon reserves. However, the decision-making process for implementing offshore oil and gas projects in the Arctic is highly uncertain and requires consideration of many factors. This study presents a comprehensive approach to evaluating the prospects of oil production on the Russian Arctic shelf. It is based on a specific methodology which involves expert forecasting methods. We analyze the current conditions and key factors and indicators, focusing on oil prices and quality of technologies that could influence the decision-making in the oil and gas company concerning Arctic offshore fields’ development. We use general scientific methods—analysis, synthesis, classification and systematization—and propose a method for assessing the prospects of Arctic projects which is based on a three-step algorithm. Together with practical tools presented in the article, it will support decision-making on the project initiation and the development of a particular field.


2020 ◽  
Author(s):  
Pieternel Levelt ◽  
Pepijn Veefkind ◽  
Esther Roosenbrand ◽  
John Lin ◽  
Jochen Landgraf ◽  
...  

<p>Production of oil and natural gas in North America is at an all-time high due to the development and use of horizontal drilling and hydraulic fracturing. Methane emissions associated with this industrial activity are a concern because of the contribution to climate radiative forcing. We present new measurements from the space-based TROPOspheric Monitoring Instrument (TROPOMI) launched in 2017 that show methane enhancements over production regions in the United States. Using methane and NO<sub>2</sub> column measurements from the new TROPOMI instrument, we show that emissions from oil and gas production in the Uintah and Permian Basins can be observed in the data from individual overpasses. This is a vast improvement over measurements from previous satellite instruments, which typically needed to be averaged over a year or more to quantify trends and regional enhancements in methane emissions. In the Uintah Basin in Utah, TROPOMI methane columns correlated with in-situ measurements, and the highest columns were observed over the deepest parts of the basin, consistent with the accumulation of emissions underneath inversions. In the Permian Basin in Texas and New Mexico, methane columns showed maxima over regions with the highest natural gas production and were correlated with nitrogen-dioxide columns at a ratio that is consistent with results from in-situ airborne measurements. The improved detail provided by TROPOMI will likely enable the timely monitoring from space of methane and NO2 emissions associated with regular oil and natural gas production.</p>


2021 ◽  
Vol 258 ◽  
pp. 05030
Author(s):  
Ishel Bianco ◽  
Alexander Illinskyi ◽  
Alexey Fadeev

Ecological monitoring provides a more complete picture of the possible effects of extractive activities for oil and Gas companies operating in the Russian Arctic and in other ecological sensitive areas. This paper proposes a framework to evaluate the adequacies of different monitoring systems for Operations in the Arctic for oil and Gas companies. Our research also demonstrates how Ecological monitoring could be a useful strategic tool for long term risk reduction, accident avoidance and to improve the socio-economic development for indigenous communities.


Sign in / Sign up

Export Citation Format

Share Document