Materialflussmodelle für die HiL-Simulation*/Material Flow Models for HiL-Simulation – Simulating the material flow of machines in a Hardware-in-the-Loop simulation

2016 ◽  
Vol 106 (03) ◽  
pp. 119-124
Author(s):  
C. Scheifele ◽  
A. Lechler ◽  
A. Prof. Verl

Bei einer Hardware-in-the-Loop (HiL)-Simulation wird die reale Steuerungstechnik mit einer experimentierfähigen Maschinensimulation verbunden. Soll das Bewegungsverhalten des Materialflusses in der Maschinensimulation zur Generierung von Steuerungssignalen berechnet werden, so müssen die harten Echtzeitanforderungen einer HiL-Simulation eingehalten werden. Dieser Beitrag betrachtet verschiedene Materialflussmodelle und gibt das Ziel eines mehrskaligen Simulationsmodells für die HiL-Simulation vor.   A Hardware-in-the-Loop (HiL) simulation couples real control technology with an experimental machine simulation. When computing the movement behavior of a material flow in the machine simulation to generate control signals, the hard real-time requirements of a HiL-simulation must be considered. This article checks different material flow models and defines the objective of a multi-scale material flow model for HiL-Simulation.

1986 ◽  
Vol 51 (11) ◽  
pp. 2489-2501
Author(s):  
Benitto Mayrhofer ◽  
Jana Mayrhoferová ◽  
Lubomír Neužil ◽  
Jaroslav Nývlt

A model is derived for a multi-stage crystallization with cross-current flows of the solution and the crystals being purified. The purity of the product is compared with that achieved in the countercurrent arrangement. A suitable function has been set up which allows the cross-current and countercurrent flow models to be compared and reduces substantially the labour of computation for the countercurrent arrangement. Using the recrystallization of KAl(SO4)2.12 H2O as an example, it is shown that, when the cross-current and countercurrent processes are operated at the same output, the countercurrent arrangement is more advantageous because its solvent consumption is lower.


1976 ◽  
Vol 109 (1) ◽  
pp. 41-59 ◽  
Author(s):  
Paul B.J. Woodson ◽  
Werner T. Schlapfer ◽  
Jacques P. Tremblay ◽  
Samuel H. Barondes

The traffic flow conditions in developing countries are predominantly heterogeneous. The early developed traffic flow models have been derived from fluid flow to capture the behavior of the traffic. The very first two-equation model derived from fluid flow is known as the Payne-Whitham or PW Model. Along with the traffic flow, this model also captures the traffic acceleration. However, the PW model adopts a constant driver behavior which cannot be ignored, especially in the situation of heterogeneous traffic.This research focuses on testing the PW model and its suitability for heterogeneous traffic conditions by observing the model response to a bottleneck on a circular road. The PW model is mathematically approximated using the Roe Decomposition and then the performance of the model is observed using simulations.


Author(s):  
Scott Driscoll ◽  
James D. Huggins ◽  
Wayne J. Book

Hardware-in-the-Loop (HIL) Simulation enables testing of an actual physical component of a system under a variety of conditions without the expense of full scale testing. In hydraulic systems, flows or pressures that interface with the component in question are controlled by a computer running a simulation designed to emulate a complete system under real operating conditions. Typically, servo valves are used as actuators to control the flows or pressures. This paper investigates the use of electric servo-motors coupled to hydraulic gear motors as alternative actuators, and discusses some of the advantages and disadvantages that motors have in comparison to valves. A demonstration HIL simulation involving a mobile proportional flow control valve attached to an emulated backhoe is described, and results are compared to data from a real backhoe.


SIMULATION ◽  
2019 ◽  
Vol 96 (4) ◽  
pp. 375-385 ◽  
Author(s):  
Yuan Yuan ◽  
Zhiwen Zhao ◽  
Tianhong Zhang

In the hardware-in-the-loop (HIL) simulation of the fuel control unit (FCU) for aero-engines, the back pressure has a great impact on the metered fuel, thus influencing the confidence of the simulation. During the practical working process of an aero-engine, the back pressure of the FCU is influenced by the combined effect of the pressure of the combustion chamber, the resistance of the spray nozzles, and the resistance of the distribution valve. There is a need to study the the mimicking technique of FCU back pressure. This paper models the fuel system of an aero-engine so as to reveal the impact of FCU back pressure on the metered fuel and come up with a scheme to calculate the equivalent FCU back pressure. After analyzing the requirements for mimicking the pressure, an automatic regulating facility is designed to adjust the FCU back pressure in real time. Finally, experiments are carried out to verify its performance. Results show that the mimicking technique of back pressure is well suited for application in HIL simulation. It is able to increase the confidence of the simulation and provide guidance to the implementation of mimicking the FCU back pressure.


2013 ◽  
Vol 6 (4) ◽  
pp. 6493-6568 ◽  
Author(s):  
R. Fischer ◽  
S. Nowicki ◽  
M. Kelley ◽  
G. A. Schmidt

Abstract. The method of elevation classes has proven to be a useful way for a low-resolution general circulation model (GCM) to produce high-resolution downscaled surface mass balance fields, for use in one-way studies coupling GCMs and ice flow models. Past uses of elevation classes have been a cause of non-conservation of mass and energy, caused by inconsistency in regridding schemes chosen to regrid to the atmosphere vs. downscaling to the ice model. This causes problems for two-way coupling. A strategy that resolves this conservation issue has been designed and is presented here. The approach identifies three grids between which data must be regridded, and five transformations between those grids required by a typical coupled GCM–ice flow model. This paper shows how each of those transformations may be achieved in a consistent, conservative manner. These transformations are implemented in GLINT2, a library used to couple GCMs with ice models. Source code and documentation are available for download. Confounding real-world issues are discussed, including the use of projections for ice modeling, how to handle dynamically changing ice geometry, and modifications required for finite element ice models.


Author(s):  
Cem Dolu ◽  
Lu¨tfullah Kuddusi

First and second order slip flow models in rectangular microchannels heated at constant and uniform wall temperature are studied. The velocity and temperature profiles for hydrodynamically and thermally developed incompressible slip flow regime available in literature are used. The average nondimensional slip velocity and temperature jump are found by using first and second order slip flow models. The average Nusselt number is also derived by using both first and second order slip flow models. The effects of Knudsen number, aspect ratio and second order slip flow model on the heat transfer characteristics of microchannel are explored.


Sign in / Sign up

Export Citation Format

Share Document