Drehen von Vermicularguss unter kryogener Kühlung*/Turning compacted graphite iron under cryogenic cooling - Studies on the impact of process cooling on material and chip formation properties

2017 ◽  
Vol 107 (01-02) ◽  
pp. 14-20
Author(s):  
M. Prof. Oechsner ◽  
M. Siebers ◽  
H. Scheerer ◽  
G. Andersohn ◽  
E. Prof. Abele ◽  
...  

Vermiculargusswerkstoffe zählen zu vergleichsweise schwer zerspanbaren Werkstoffen im automobilen Antriebsstrang. Insbesondere kontinuierliche Schnittbedingungen stellen hohe Anforderungen an die eingesetzten Schneidstoffe. Kryogene Kühlverfahren können einen entscheidenden Beitrag zur Verlängerung der Werkzeugstandzeit von Hartmetall- und diamantbasierten Schneidstoffen leisten. Der Fachbeitrag fasst die Untersuchungen zum Einfluss der Prozesskühlung auf die Werkstoff- und Spanbildungseigenschaften zusammen.   Compacted graphite iron (CGI-450) with its excellent mechanical properties has a large and still increasing importance in the field of construction materials, especially in the field of automotive powertrain applications. The choice of tungsten carbide and diamond-based cutting tools with suitable technological constraints and different cooling strategies in view of chip formation, chip shape and cutting energy are to be illustrated in the following tests.

2016 ◽  
Vol 106 (01-02) ◽  
pp. 21-26
Author(s):  
E. Abele ◽  
T. Heep

Im Motorenbau werden vermehrt hochfeste Vermiculargusswerkstoffe mit hervorragenden mechanischen Eigenschaften eingesetzt. Die Zerspanbarkeit von Gusseisen mit Vermiculargrafit (GJV) stellt jedoch eine große Herausforderung dar. Die nachfolgenden Untersuchungsergebnisse verdeutlichen die Auswirkungen der Werkstoffcharge und der technologischen Randbedingungen auf das Einsatzverhalten von polykristallinen Diamantschneidstoffen.   Higher strength cast iron materials with improved mechanical properties are used for the construction of automotive engines. Especially machining of compacted graphite iron (CGI) is challenging for the manufacturer. This paper deals with the impact of different material batches in case of CGI-450 and with the effect of varied technological boundary conditions on tool life of polycrystalline diamond cutting tools.


Author(s):  
Niniza S. P. Dlamini ◽  
Iakovos Sigalas ◽  
Andreas Koursaris

Cutting tool wear of polycrystalline cubic boron nitride (PcBN) tools was investigated in oblique turning experiments when machining compacted graphite iron at high cutting speeds, with the intention of elucidating the failure mechanisms of the cutting tools and presenting an analysis of the chip formation process. Dry finish turning experiments were conducted in a CNC lathe at cutting speeds in the range of 500–800m/min, at a feed rate of 0.05mm/rev and depth of cut of 0.2mm. Two different tool end-of-life criteria were used: a maximum flank wear scar size of 0.3mm (flank wear failure criterion) or loss of cutting edge due to rapid crater wear to a point where the cutting tool cannot machine with an acceptable surface finish (surface finish criterion). At high cutting speeds, the cutting tools failed prior to reaching the flank wear failure criterion due to rapid crater wear on the rake face of the cutting tools. Chip analysis, using SEM, revealed shear localized chips, with adiabatic shear bands produced in the primary and secondary shear zones.


2020 ◽  
Vol 110 (01-02) ◽  
pp. 2-6
Author(s):  
Matthias Weigold ◽  
Timo Scherer ◽  
Eric Schmidt ◽  
Martin Schwentenwein ◽  
Thomas Prochaska

Die additive Fertigung von Schneidstoffen hat das Potenzial, leistungsfähigere Zerspanungswerkzeuge zu ermöglichen. Das Lithography-based Ceramic-Manufacturing-(LCM)-Verfahren erlaubt die Fertigung hochbelastbarer Bauteile aus Keramik. Dieser Beitrag stellt zum einen das LCM-Verfahren und zum anderen die Entwicklung additiv herstellbarer Wendeschneidplatten vor. Zuletzt erfolgt die Überprüfung der Funktionstauglichkeit von additiv hergestellten keramischen Wendeschneidplatten in Außenlängsdrehversuchen mit vermicularem Gusseisen (GJV-450).   The additive manufacturing of cutting materials has the potential to enable more efficient cutting tools. The Lithography-based Ceramic Manufacturing (LCM) process allows for the production of high-performance ceramic components. This article presents the LCM process as well as the development of indexable inserts that can be produced additively. Finally, the results of external longitudinal turning tests in Compacted Graphite Iron (CGI-450) are presented.


Wear ◽  
2011 ◽  
Vol 271 (9-10) ◽  
pp. 2426-2432 ◽  
Author(s):  
M.B. Da Silva ◽  
V.T.G. Naves ◽  
J.D.B. De Melo ◽  
C.L.F. De Andrade ◽  
W.L. Guesser

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6831
Author(s):  
María-Belén Prendes-Gero ◽  
Celestino González-Nicieza ◽  
Covadonga Betegón-Biempica ◽  
Martina-Inmaculada Álvarez-Fernández

The need for large and fast excavations, together with noise and vibration limitations, means that mechanical removal is increasingly used rather than blasting. In mechanical removal, the cutting tools hit the rock and penetrate it, and then move in the direction of cutting, dragging and detaching a portion of rock called chip. Most research on mechanical removal approaches it as a static process without taking into account the speed at which the cutting element impacts the rock. This work presents the design of a pendulum equipment capable of simulating the impact of a cutting element, specifically a pick, against a rock, reproducing the removal in a similar way to how it is carried out in real excavations. Cutting tests are carried out with concrete samples with a cement/sand ratio of 1:1 and 3:1, the volume of material that is removed is calculated using a 3D scanner and images of the tests are collected with a high-speed video camera to facilitate the interpretation of the results. The results confirm the direct relationship between impact energy, chip size and cutting depth, prove the formation of an affected zone that allows to reduce the cutting energy, and empirically obtain the optimum cutting energy with which the maximum performance in mechanical removal would be achieved.


Author(s):  
K. Philip Varghese ◽  
A. K. Balaji

This work presents an extension of a previous investigation [1] conducted on gaining an understanding of the critical tribological issues encountered in the machining of compacted graphite iron (CGI) using different cutting tool materials. As part of this study, wear tests were conducted on flat-faced coated and uncoated carbide tools and coated and uncoated cermet tools. The machining tests were conducted under dry condition. Performance assessment of the cutting tools was made using a comparative analysis of the measured cutting forces and post machining scanning electron microscopy (SEM) of used tools. The results reveal the interaction of selected cutting conditions and tool substrate material and coatings on the tribological performance and wear behavior of tools during CGI machining.


Sign in / Sign up

Export Citation Format

Share Document