Maschinelles Lernen zur Prognose von Auftragskennzahlen/Machine learning for the forecasting of key figures of customer orders

2021 ◽  
Vol 111 (03) ◽  
pp. 124-129
Author(s):  
Markus Böhm ◽  
Klaus Erlach ◽  
Thomas Bauernhansl

Prognosen bilden oft die Grundlage für Entscheidungen in der Produktion. Heute werden solche Voraussagen meist erfahrungs- oder modellbasiert getroffen. Bei komplexen Systemen stößt das an die Grenzen der Zuverlässigkeit oder ist mit hohem zeitlichen Aufwand verbunden. Klassierungsmethoden des Maschinellen Lernens versprechen dafür Lösungen. Automatisch erstellte Entscheidungsbäume können eine Möglichkeit sein, echtzeitnah Prognosen für Kennzahlen in der Produktion zu erstellen.   Forecasts often form the basis for decisions on the shop floor. Today, forecasts in production are mostly derived from personal experience or digital models. With complex systems, this approach reaches the limits of reliability or is associated with a high expenditure of time. Classification methods of machine learning promise solutions for this. Automatically generated decision trees can be a possibility to generate real-time forecasts for key figures in production.

Author(s):  
Ming-Chuan Chiu ◽  
Chien-De Tsai ◽  
Tung-Lung Li

Abstract A cyber-physical system (CPS) is one of the key technologies of industry 4.0. It is an integrated system that merges computing, sensors, and actuators, controlled by computer-based algorithms that integrate people and cyberspace. However, CPS performance is limited by its computational complexity. Finding a way to implement CPS with reduced complexity while incorporating more efficient diagnostics, forecasting, and equipment health management in a real-time performance remains a challenge. Therefore, the study proposes an integrative machine-learning method to reduce the computational complexity and to improve the applicability as a virtual subsystem in the CPS environment. This study utilizes random forest (RF) and a time-series deep-learning model based on the long short-term memory (LSTM) networking to achieve real-time monitoring and to enable the faster corrective adjustment of machines. We propose a method in which a fault detection alarm is triggered well before a machine fails, enabling shop-floor engineers to adjust its parameters or perform maintenance to mitigate the impact of its shutdown. As demonstrated in two empirical studies, the proposed method outperforms other times-series techniques. Accuracy reaches 80% or higher 3 h prior to real-time shutdown in the first case, and a significant improvement in the life of the product (281%) during a particular process appears in the second case. The proposed method can be applied to other complex systems to boost the efficiency of machine utilization and productivity.


Real time crash predictor system is determining frequency of crashes and also severity of crashes. Nowadays machine learning based methods are used to predict the total number of crashes. In this project, prediction accuracy of machine learning algorithms like Decision tree (DT), K-nearest neighbors (KNN), Random forest (RF), Logistic Regression (LR) are evaluated. Performance analysis of these classification methods are evaluated in terms of accuracy. Dataset included for this project is obtained from 49 states of US and 27 states of India which contains 2.25 million US accident crash records and 1.16 million crash records respectively. Results prove that classification accuracy obtained from Random Forest (RF) is96% compared to other classification methods.


2018 ◽  
Author(s):  
Rachel Kornfield ◽  
Prathusha K Sarma ◽  
Dhavan V Shah ◽  
Fiona McTavish ◽  
Gina Landucci ◽  
...  

BACKGROUND Online discussion forums allow those in addiction recovery to seek help through text-based messages, including when facing triggers to drink or use drugs. Trained staff (or “moderators”) may participate within these forums to offer guidance and support when participants are struggling but must expend considerable effort to continually review new content. Demands on moderators limit the scalability of evidence-based digital health interventions. OBJECTIVE Automated identification of recovery problems could allow moderators to engage in more timely and efficient ways with participants who are struggling. This paper aimed to investigate whether computational linguistics and supervised machine learning can be applied to successfully flag, in real time, those discussion forum messages that moderators find most concerning. METHODS Training data came from a trial of a mobile phone-based health intervention for individuals in recovery from alcohol use disorder, with human coders labeling discussion forum messages according to whether or not authors mentioned problems in their recovery process. Linguistic features of these messages were extracted via several computational techniques: (1) a Bag-of-Words approach, (2) the dictionary-based Linguistic Inquiry and Word Count program, and (3) a hybrid approach combining the most important features from both Bag-of-Words and Linguistic Inquiry and Word Count. These features were applied within binary classifiers leveraging several methods of supervised machine learning: support vector machines, decision trees, and boosted decision trees. Classifiers were evaluated in data from a later deployment of the recovery support intervention. RESULTS To distinguish recovery problem disclosures, the Bag-of-Words approach relied on domain-specific language, including words explicitly linked to substance use and mental health (“drink,” “relapse,” “depression,” and so on), whereas the Linguistic Inquiry and Word Count approach relied on language characteristics such as tone, affect, insight, and presence of quantifiers and time references, as well as pronouns. A boosted decision tree classifier, utilizing features from both Bag-of-Words and Linguistic Inquiry and Word Count performed best in identifying problems disclosed within the discussion forum, achieving 88% sensitivity and 82% specificity in a separate cohort of patients in recovery. CONCLUSIONS Differences in language use can distinguish messages disclosing recovery problems from other message types. Incorporating machine learning models based on language use allows real-time flagging of concerning content such that trained staff may engage more efficiently and focus their attention on time-sensitive issues.


2021 ◽  
Vol 30 (1) ◽  
pp. 438-459
Author(s):  
Asma’ Amro ◽  
Mousa Al-Akhras ◽  
Khalil El Hindi ◽  
Mohamed Habib ◽  
Bayan Abu Shawar

Abstract Decision trees learning is one of the most practical classification methods in machine learning, which is used for approximating discrete-valued target functions. However, they may overfit the training data, which limits their ability to generalize to unseen instances. In this study, we investigated the use of instance reduction techniques to smooth the decision boundaries before training the decision trees. Noise filters such as ENN, RENN, and ALLKNN remove noisy instances while DROP3 and DROP5 may remove genuine instances. Extensive empirical experiments were conducted on 13 benchmark datasets from UCI machine learning repository with and without intentionally introduced noise. Empirical results show that eliminating border instances improves the classification accuracy of decision trees and reduces the tree size, which reduces the training and classification times. In datasets without intentionally added noise, applying noise filters without the use of the built-in Reduced Error Pruning gave the best classification accuracy. ENN, RENN, and ALLKNN outperformed decision trees learning without pruning in 9, 9, and 8 out of 13 datasets, respectively. The datasets reduced using ENN and RENN without built-in pruning were more effective when noise was intentionally introduced in different ratios.


Author(s):  
Kande Trupti V

The tourism and travel sector is trying to provide different facility using a large amount of data collected from different tourism web sites. The tourist easily retrieves to reviews, evidence of different tourists and accesses them properly. It helps tourists have made the planning of visit to tourism place. So that, a major challenge faced by tourism sector is to utilize the accumulate information for detecting tourist preferences. Unfortunately, some user's comments are irrelevant and complex for understanding and long-winded these become hard for recommendation. Aspect based sentiment classification methods have shown promise in overcome the issue. In existing not much work on aspect based sentiment with classification. Here in this paper represents a framework of aspect based sentiment classification recommendation system that will not only identify the aspects very efficiently but can perform classification task with high accuracy using machine learning algorithms. This framework helps tourists to find better tourist spot, hotels, restaurant and resort in a city, and here performance has been evaluated by conducting experiments on Yelp and foursquare real-time datasets.


TAPPI Journal ◽  
2019 ◽  
Vol 18 (11) ◽  
pp. 679-689
Author(s):  
CYDNEY RECHTIN ◽  
CHITTA RANJAN ◽  
ANTHONY LEWIS ◽  
BETH ANN ZARKO

Packaging manufacturers are challenged to achieve consistent strength targets and maximize production while reducing costs through smarter fiber utilization, chemical optimization, energy reduction, and more. With innovative instrumentation readily accessible, mills are collecting vast amounts of data that provide them with ever increasing visibility into their processes. Turning this visibility into actionable insight is key to successfully exceeding customer expectations and reducing costs. Predictive analytics supported by machine learning can provide real-time quality measures that remain robust and accurate in the face of changing machine conditions. These adaptive quality “soft sensors” allow for more informed, on-the-fly process changes; fast change detection; and process control optimization without requiring periodic model tuning. The use of predictive modeling in the paper industry has increased in recent years; however, little attention has been given to packaging finished quality. The use of machine learning to maintain prediction relevancy under everchanging machine conditions is novel. In this paper, we demonstrate the process of establishing real-time, adaptive quality predictions in an industry focused on reel-to-reel quality control, and we discuss the value created through the availability and use of real-time critical quality.


Sign in / Sign up

Export Citation Format

Share Document