scholarly journals The implied motion aftereffect changes decisions, but not confidence

Author(s):  
Regan M. Gallagher ◽  
Thomas Suddendorf ◽  
Derek H. Arnold

AbstractViewing static images depicting movement can result in a motion aftereffect: people tend to categorise direction signals as moving in the opposite direction relative to the implied motion in still photographs. This finding could indicate that inferred motion direction can penetrate sensory processing and change perception. Equally possible, however, is that inferred motion changes decision processes, but not perception. Here we test these two possibilities. Since both categorical decisions and subjective confidence are informed by sensory information, confidence can be informative about whether an aftereffect probably results from changes to perceptual or decision processes. We therefore used subjective confidence as an additional measure of the implied motion aftereffect. In Experiment 1 (implied motion), we find support for decision-level changes only, with no change in subjective confidence. In Experiment 2 (real motion), we find equal changes to decisions and confidence. Our results suggest the implied motion aftereffect produces a bias in decision-making, but leaves perceptual processing unchanged.

2018 ◽  
Author(s):  
Regan Gallagher ◽  
Thomas Suddendorf ◽  
Derek H. Arnold

Viewing static images depicting movement can result in a motion aftereffect: people tend to categorise direction signals as moving in the opposite direction to the implied motion of still photographs. This finding could indicate that inferred motion direction can penetrate sensory processing and impact perception. Equally possible, however, is that inferred motion impacts decision processes, but not perception. Here we test these two possibilities. Since both categorical decisions and subjective confidence are informed by sensory information, confidence can be informative about whether an aftereffect likely results from changes to perceptual or decision processes. We therefore leveraged subjective confidence as an additional measure of the implied motion aftereffect. In Experiment 1 (implied motion), we find support for decision-level changes only, with no change in subjective confidence. In Experiment 2 (real motion), we find equal changes to decisions and confidence. Our results suggest the implied motion aftereffect produces a bias in decision-making, but leaves perceptual processing unchanged.


Perception ◽  
1986 ◽  
Vol 15 (5) ◽  
pp. 603-612 ◽  
Author(s):  
Michael J Wright

Adapting to a drifting grating (temporal frequency 4 Hz, contrast 0.4) in the periphery gave rise to a motion aftereffect (MAE) when the grating was stopped. A standard unadapted foveal grating was matched to the apparent velocity of the MAE, and the matching velocity was approximately constant regardless of the visual field position and spatial frequency of the adapting grating. On the other hand, when the MAE was measured by nulling with real motion of the test grating, nulling velocity was found to increase with eccentricity. The nulling velocity was constant when scaled to compensate for changes in the spatial ‘grain’ of the visual field. Thus apparent velocity of MAE is constant across the visual field, but requires a greater velocity of real motion to cancel it in the periphery. This confirms that the mechanism underlying MAE is spatially-scaled with eccentricity, but temporally homogeneous. A further indication of temporal homogeneity is that when MAE is tracked, by matching or by nulling, the time course of temporal decay of the aftereffect is similar for central and for peripheral stimuli.


eLife ◽  
2017 ◽  
Vol 6 ◽  
Author(s):  
Guilhem Ibos ◽  
David J Freedman

Decisions about the behavioral significance of sensory stimuli often require comparing sensory inference of what we are looking at to internal models of what we are looking for. Here, we test how neuronal selectivity for visual features is transformed into decision-related signals in posterior parietal cortex (area LIP). Monkeys performed a visual matching task that required them to detect target stimuli composed of conjunctions of color and motion-direction. Neuronal recordings from area LIP revealed two main findings. First, the sequential processing of visual features and the selection of target-stimuli suggest that LIP is involved in transforming sensory information into decision-related signals. Second, the patterns of color and motion selectivity and their impact on decision-related encoding suggest that LIP plays a role in detecting target stimuli by comparing bottom-up sensory inputs (what the monkeys were looking at) and top-down cognitive encoding inputs (what the monkeys were looking for).


2009 ◽  
Vol 102 (5) ◽  
pp. 3016-3025 ◽  
Author(s):  
Miguel Castelo-Branco ◽  
Lajos R. Kozak ◽  
Elia Formisano ◽  
João Teixeira ◽  
João Xavier ◽  
...  

Activity in the human motion complex (hMT+/V5) is related to the perception of motion, be it either real surface motion or an illusion of motion such as apparent motion (AM) or motion aftereffect (MAE). It is a long-lasting debate whether illusory motion-related activations in hMT+ represent the motion itself or attention to it. We have asked whether hMT+ responses to MAEs are present when shifts in arousal are suppressed and attention is focused on concurrent motion versus nonmotion features. Significant enhancement of hMT+ activity was observed during MAEs when attention was focused either on concurrent spatial angle or color features. This observation was confirmed by direct comparison of adapting (MAE inducing) versus nonadapting conditions. In contrast, this effect was diminished when subjects had to report on concomitant speed changes of superimposed AM. The same finding was observed for concomitant orthogonal real motion (RM), suggesting that selective attention to concurrent illusory or real motion was interfering with the saliency of MAE signals in hMT+. We conclude that MAE-related changes in the global activity of hMT+ are present provided selective attention is not focused on an interfering feature such as concurrent motion. Accordingly, there is a genuine MAE-related motion signal in hMT+ that is neither explained by shifts in arousal nor by selective attention.


2006 ◽  
Vol 18 (2) ◽  
pp. 158-168 ◽  
Author(s):  
Jeannette A. M. Lorteije ◽  
J. Leon Kenemans ◽  
Tjeerd Jellema ◽  
Rob H. J. van der Lubbe ◽  
Frederiek de Heer ◽  
...  

Viewing static photographs of objects in motion evokes higher fMRI activation in the human medial temporal complex (MT+) than looking at similar photographs without this implied motion. As MT+ is traditionally thought to be involved in motion perception (and not in form perception), this finding suggests feedback from object-recognition areas onto MT+. To investigate this hypothesis, we recorded extracranial potentials evoked by the sight of photographs of biological agents with and without implied motion. The difference in potential between responses to pictures with and without implied motion was maximal between 260 and 400 msec after stimulus onset. Source analysis of this difference revealed one bilateral, symmetrical dipole pair in the occipital lobe. This area also showed a response to real motion, but approximately 100 msec earlier than the implied motion response. The longer latency of the implied motion response in comparison to the real motion response is consistent with a feedback projection onto MT+ following object recognition in higher-level temporal areas.


2016 ◽  
Author(s):  
Long Luu ◽  
Alan A Stocker

AbstractIllusions provide a great opportunity to study how perception is affected by both the observer's expectations and the way sensory information is represented1,2,3,4,5,6. Recently, Jazayeri and Movshon7 reported a new and interesting perceptual illusion, demonstrating that the perceived motion direction of a dynamic random dot stimulus is systematically biased when preceded by a motion discrimination judgment. The authors hypothesized that these biases emerge because the brain predominantly relies on those neurons that are most informative for solving the discrimination task8, but then is using the same neural weighting profile for generating the percept. In other words, they argue that these biases are “mistakes” of the brain, resulting from using inappropriate neural read-out weights. While we were able to replicate the illusion for a different visual stimulus (orientation), our new psychophysical data suggest that the above interpretation is likely incorrect: Biases are not caused by a read-out profile optimized for solving the discrimination task but rather by the specific choices subjects make in the discrimination task on any given trial. We formulate this idea as a conditioned Bayesian observer model and show that it can explain the new as well as the original psychophysical data. In this framework, the biases are not caused by mistake but rather by the brain's attempt to remain ‘self-consistent’ in its inference process. Our model establishes a direct connection between the current perceptual illusion and the well-known phenomena of cognitive consistency and dissonance9,10.


Author(s):  
Léa Caya-Bissonnette

The underlying processes allowing for decision-making has been a question of interest for many neuroscientists. The lateral intraparietal cortex, or LIP, was shown to accumulate context and sensory information to compute a decision variable. The following review will present the work of Kumano, Suda and Uka who studied the link between context and sensory information during decision-making. To do so, a monkey was trained to associate the color of a fixating dot to one of two tasks. The tasks consisted in either indicating the motion or the depth of themajority of the dots on a screen. The local field potential of the LIP neurons was recorded, and the researchers found a role of context during the stimulus presentation in regards to decision formation. The results have important implication for mental disorders involving malfunction in decision processes.


2018 ◽  
Author(s):  
Regan M. Gallagher ◽  
Thomas Suddendorf ◽  
Derek H. Arnold

AbstractPerceptual judgements are, by nature, a product of both sensation and the cognitive processes responsible for interpreting and reporting subjective experiences. Changed perceptual judgements may thus result from changes in how the world appears (perception), or subsequent interpretation (cognition). This ambiguity has led to persistent debates about how to interpret changes in decision-making, and if cognition can change how the world looks, or sounds, or feels. Here we introduce an approach that can help resolve these ambiguities. In three motion-direction experiments, we measured perceptual judgements and subjective confidence. Sensory encoding changes (i.e. the motion-direction aftereffect) impacted each measure equally, as the perceptual evidence informing both responses had changed. However, decision changes dissociated from reports of subjective uncertainty when non-perceptual effects changed decision-making. Our findings show that subjective confidence can provide important information about the cause of aftereffects, and can help inform us about the organisation of the mind.


Author(s):  
Frans A. J. Verstraten ◽  
Peter J. Bex

The aftereffect of motion is one of the oldest known illusions. It refers to the illusory motion of a stationary scene after some time of adaptation to real motion. While it is still unknown whether this adaptation effect has any functional value, it surely has served well as a tool to investigate the functional organization of the visual system. In this chapter some of the classic findings are discussed. More recent work using complex stimuli, attentional modulation, higher order motion, as well as modern neuro-imaging techniques has provided vision scientists with surprising new insights. Discussion of the related concepts of motion perception, motion transparency, and interocular transfer are included.


Author(s):  
Ouren X. Kuiper ◽  
Jelte E. Bos ◽  
Eike A. Schmidt ◽  
Cyriel Diels ◽  
Stefan Wolter

Objective This study explores the role of anticipation in motion sickness. We compared three conditions varying in motion predictability and assessed the effect of anticipation on subsequent illness ratings using a within-subjects design. Background Anticipation is thought to play a role in motion sickness by reducing the discrepancy between sensed and expected sensory information. However, both the exact role and potential magnitude of anticipation on motion sickness are unknown. Method Participants ( N = 17) were exposed to three 15-min conditions consisting of repeated fore-aft motion on a sled on a 40-m rail (1) at constant intervals and consistent motion direction, (2) at constant intervals but varied motion direction, and (3) at varied intervals but consistent motion direction. Conditions were otherwise identical in motion intensity and displacement, as they were composed of the same repetitions of identical blocks of motion. Illness ratings were recorded at 1-min intervals using an 11-point motion sickness scale. Results Average illness ratings after exposure were significantly lower for the predictable condition, compared with both the directionally unpredictable condition and the temporally unpredictable condition. Conclusion Unpredictable motion is significantly more provocative compared with predictable motion. Findings suggest motion sickness results from a discrepancy between sensed and expected motion, rather than from unpreparedness to motion. Application This study underlines the importance of an individual’s anticipation to motion in motion sickness. Furthermore, this knowledge could be used in domains such as that of autonomous vehicles to reduce carsickness.


Sign in / Sign up

Export Citation Format

Share Document