scholarly journals CO2 assimilation rate of canopy leaves in rain forest trees: high or low?

Tropics ◽  
1995 ◽  
Vol 4 (4) ◽  
pp. 287-296 ◽  
Author(s):  
Kazuhiko OGINO ◽  
Akio FURUKAWA
2013 ◽  
Vol 48 (9) ◽  
pp. 1210-1219 ◽  
Author(s):  
Muhammad Iqbal ◽  
Muhammad Ashraf

The objective of this work was to assess the regulatory effects of auxin-priming on gas exchange and hormonal homeostasis in spring wheat subjected to saline conditions. Seeds of MH-97 (salt-intolerant) and Inqlab-91 (salt-tolerant) cultivars were subjected to 11 priming treatments (three hormones x three concentrations + two controls) and evaluated under saline (15 dS m-1) and nonsaline (2.84 dS m-1) conditions. The priming treatments consisted of: 5.71, 8.56, and 11.42 × 10-4 mol L-1 indoleacetic acid; 4.92, 7.38, and 9.84 × 10-4 mol L-1 indolebutyric acid; 4.89, 7.34, and 9.79 × 10-4 mol L-1 tryptophan; and a control with hydroprimed seeds. A negative control with nonprimed seeds was also evaluated. All priming agents diminished the effects of salinity on endogenous abscisic acid concentration in the salt-intolerant cultivar. Grain yield was positively correlated with net CO2 assimilation rate and endogenous indoleacetic acid concentration, and it was negatively correlated with abscisic acid and free polyamine concentrations. In general, the priming treatment with tryptophan at 4.89 × 10-4 mol L-1 was the most effective in minimizing yield losses and reductions in net CO2 assimilation rate, under salt stress conditions. Hormonal homeostasis increases net CO2 assimilation rate and confers tolerance to salinity on spring wheat.


2006 ◽  
Vol 18 (3) ◽  
pp. 407-411 ◽  
Author(s):  
Mauro G. dos Santos ◽  
Rafael V. Ribeiro ◽  
Marcelo G. Teixeira ◽  
Ricardo F. de Oliveira ◽  
Carlos Pimentel

Two common bean cultivars were grown in pots under greenhouse conditions. Plants were submitted to a foliar Pi spray two days before suspending irrigation, what enhanced net CO2 assimilation rate of Ouro Negro cultivar but did not change significantly the photosynthesis of Carioca cultivar under both water deficit and rehydration periods. The results revealed that a foliar Pi spray induced an up-regulation of photosynthesis in common bean under mild water deficit, with this effect being genotype-dependent.


2019 ◽  
Vol 48 (4) ◽  
pp. 1215-1221
Author(s):  
Zikria Zafar ◽  
Fahad Rasheed ◽  
Muhammad Abdullah ◽  
Mir Md Abdus Salam ◽  
Muhammad Mohsin

A greenhouse experiment was conducted to investigate the effects of water deficit on growth and physiological parameters of Ficus benjamina and Conocarpus erectus. The results revealed that all growth parameters such as plant height, stem diameter, no. of leaves, no. of branches and chlorophyll contents significantly decreased under water deficit condition. Interestingly, although leaf, stem and total biomass production and allocation decreased significantly under water deficit, but root biomass production and allocation increased significantly. Similarly, stomatal conductance to water vapor decreased significantly and CO2 assimilation rate remained similar to control under water deficit condition. Resultantly, a significant increase in water use efficiency was evident in both species under water deficit condition. These results suggested that, in spite of a significant decrease in biomass production, young Conocarpus erectus and Ficus benjamina can tolerate water deficit which is due to sustained CO2 assimilation rate and increase in root biomass.


2020 ◽  
Author(s):  
Eleinis Ávila-Lovera ◽  
Héctor Blanco ◽  
Olga Móvil ◽  
Louis S Santiago ◽  
Wilmer Tezara

Abstract Shade tolerance is a widespread strategy of rainforest understory plants. Many understory species have green young stems that may assimilate CO2 and contribute to whole-plant carbon balance. Cacao commonly grows in the shaded understory and recent emphasis has been placed on diversifying the types of trees used to shade cacao plants to achieve additional ecosystem services. We studied three agricultural cacao cultivars growing in the shade of four timber species (Cedrela odorata L., Cordia thaisiana Agostini, Swietenia macrophylla King and Tabebuia rosea (Bertol) A.D.C.) in an agroforestry system to (i) evaluate the timber species for their effect on the physiological performance of three cacao cultivars; (ii) assess the role of green stems on the carbon economy of cacao; and (iii) examine coordination between stem hydraulic conductivity and stem photosynthesis in cacao. Green young stem photosynthetic CO2 assimilation rate was positive and double leaf CO2 assimilation rate, indicating a positive contribution of green stems to the carbon economy of cacao; however, green stem area is smaller than leaf area and its relative contribution is low. Timber species showed a significant effect on leaf gas exchange traits and on stomatal conductance of cacao, and stem water-use efficiency varied among cultivars. There were no significant differences in leaf-specific hydraulic conductivity among cacao cultivars, but sapwood-specific hydraulic conductivity varied significantly among cultivars and there was an interactive effect of cacao cultivar × timber species. Hydraulic efficiency was coordinated with stem-stomatal conductance, but not with leaf-stomatal conductance or any measure of photosynthesis. We conclude that different shade regimes determined by timber species and the interaction with cacao cultivar had an important effect on most of the physiological traits and growth variables of three cacao cultivars growing in an agroforestry system. Results suggested that C. odorata is the best timber species to provide partial shade for cacao cultivars in the Barlovento region in Venezuela, regardless of cultivar origin.


2020 ◽  
Vol 12 ◽  
pp. e3456
Author(s):  
Alzira Maria de Sousa Silva Neta ◽  
Lauriane Almeida dos Anjos Soares ◽  
Geovani Soares de Lima ◽  
Luderlandio de Andrade Silva ◽  
Fagner Nogueira Ferreira ◽  
...  

This study aimed to evaluate the gas exchanges and growth of the purple passion fruit cultivar ‘BRS Rubi do Cerrado’ as a function of the salinity levels of the irrigation water and nitrogen fertilization. The research was conducted in pots adapted as drainage lysimeters, placed within a plant nursery, using a Regolithic Neosol of sandy texture, in the municipality of Pombal-PB, Brazil. A randomized block design was used, testing five levels of electrical conductivity of irrigation water (0.3, 1.1, 1.9, 2.7, and 3.5 dS m-1) associated with four doses of nitrogen (50, 75, 100, and 125% of the recommendation). The irrigation water salinity above 0.3 dS m-1 compromised the leaf area and the relative water content of the purple passion fruit ‘BRS Rubi do Cerrado’. High doses of nitrogen enhance the deleterious effects of irrigation water salinity on stomatal conductance, transpiration, internal CO2 concentration, CO2 assimilation rate, number of leaves, stem diameter, and height of purple passion fruit plants. When waters with salinity levels of up to 1.3 dS m-1 are used, the dose of 125 mg of N kg-1 of soil is recommendation for providing increases in the CO2 assimilation rate of the purple passion fruit ‘BRS Rubi do Cerrado’ at 70 days after sowing (DAS). Water salinity increases electrolyte leakage, regardless of nitrogen doses.


2000 ◽  
Vol 27 (1) ◽  
pp. 13 ◽  
Author(s):  
John R Evans ◽  
Marcus Schortemeyer ◽  
Nola McFarlane ◽  
Owen K Atkin

Ten contrasting Acacia species were grown in glasshouses with normal ambient CO2 or ele-vated to 700 µL L–1. Plants were grown in sand with a complete nutrient solution, including 5 mМ nitrate. Our objective was to determine the degree to which photosynthesis, and the efficiency of nitrogen and water use, were affected by growth under elevated CO2 in contrasting plant species that differ in specific foliage area (foliage area per unit foliage dry mass). Photosynthetic characteristics were measured at several stages. Growth and measurement of gas exchange under 700 mL L–1 CO2 resulted in enhanced rates of CO2 assimilation per unit foliage area in nine of the species. The degree of enhancement was independent of specific foliage area. The exception was the slow-growing A. aneura, which had lower rates of CO2 assimilation when grown and measured at 700 µL L–1 CO2 compared to plants grown and measured at 350 µL L–1 CO2, at 50, 78 and 93 d after transplanting. Leaf conductance was reduced by growth in elevated CO2 in only six of the species. Overall, elevated CO2 improved the ratio of CO2 assimi-lation to conductance by 78% and increased CO2 assimilation per unit of foliage nitrogen by 30% at a given specific foliage area. Detailed study of A. saligna and A. aneura revealed that the effects of the CO2 treatment were similarly evident on all fully expanded phyllodes, regardless of their age. Intercellular CO2 response curves were analysed on four species and revealed no change in the ratio of electron transport to Rubisco activities. However, for A. aneura and A. melanoxylon, both electron transport and Rubisco activities were reduced per unit foliage nitrogen, by growth under elevated CO2 . For A. saligna and A. implexa, these activities per unit nitrogen, were not altered by the elevated CO2 treatment. To relate CO2 assimilation rates to net assimilation rates (dry matter increment per unit foliage area per day) derived from growth analysis, between 30 and 50% of daily photosynthesis appeared to be consumed in respiration. This proportion was not altered by CO2 treatment for seven of the Acacia species, but appeared to be reduced in the other three. The increase in CO2 assimilation rate by growth under 700 com-pared to 350 µL L–1 CO2 that was measured (26%, mean of all species from two surveys), matched the increase in net assimilation rate that had been derived from destructive sampling (30%). We conclude that the increase in CO2 assimilation rate in the selected Acacia species was independent of species, growth rate and foliage area per unit foliage dry mass.


Sign in / Sign up

Export Citation Format

Share Document