scholarly journals Hole-mask colloidal nanolithography combined with tilted-angle-rotation evaporation: A versatile method for fabrication of low-cost and large-area complex plasmonic nanostructures and metamaterials

2014 ◽  
Vol 5 ◽  
pp. 577-586 ◽  
Author(s):  
Jun Zhao ◽  
Bettina Frank ◽  
Frank Neubrech ◽  
Chunjie Zhang ◽  
Paul V Braun ◽  
...  

Many nano-optical applications require a suitable nanofabrication technology. Hole-mask colloidal nanolithography has proven to be a low-cost and large-area alternative for the fabrication of complex plasmonic nanostructures as well as metamaterials. In this paper, we describe the fabrication process step by step. We manufacture a variety of different plasmonic structures ranging from simple nano-antennas over complex chiral structures to stacked composite materials for applications such as sensing. Additionally, we give details on the control of the nanostructure lateral density which allows for the multilayer-fabrication of complex nanostructures. In two accompanying movies, the fabrication strategy is explained and details are being demonstrated in the lab. The movies can be found at the website of Beilstein TV.

Nanophotonics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 943-951
Author(s):  
Pau Molet ◽  
Luz Karimé Gil-Herrera ◽  
Juan Luis Garcia-Pomar ◽  
Niccolò Caselli ◽  
Álvaro Blanco ◽  
...  

AbstractHigh-index dielectric nanostructures have emerged as an appealing complement to plasmonic nanostructures, offering similar light management capabilities at the nanoscale but free from the inherent optical losses. Despite the great interest in these all-dielectric architectures, their fabrication still requires cumbersome fabrication techniques that limit their implementation in many applications. Hence, the great interest in alternative scalable procedures. Among those, the fabrication of silicon spheres is at the forefront, with several routes available in the literature. However, the exploitation of the Mie modes sustained by these silicon resonators is limited over large areas by polydispersity or a lack of long-range order. Here, we present an all-dielectric metamaterial fabricated with a low cost and highly scalable technique: a combination of soft imprinting nanolithography and chemical vapor deposition. The resulting all-dielectric metasurface is composed of an array of silicon hemispheres on top of a high refractive index dielectric substrate. This architecture allows the exploitation of high-quality Mie resonances at a large scale due to the high monodispersity of the hemispheres organized in a single crystal two-dimensional lattice. The optical response of the metasurface can be engineered by the design parameters of the nanoimprinted structure. We further demonstrate the potential of this platform to enhance light emission by coupling dye molecules to the sustained Mie resonances and measuring both an eight-fold amplified signal and a triple lifetime reduction.


2011 ◽  
Vol 2 ◽  
pp. 448-458 ◽  
Author(s):  
Manuel R Gonçalves ◽  
Taron Makaryan ◽  
Fabian Enderle ◽  
Stefan Wiedemann ◽  
Alfred Plettl ◽  
...  

We present two routes for the fabrication of plasmonic structures based on nanosphere lithography templates. One route makes use of soft-lithography to obtain arrays of epoxy resin hemispheres, which, in a second step, can be coated by metal films. The second uses the hexagonal array of triangular structures, obtained by evaporation of a metal film on top of colloidal crystals, as a mask for reactive ion etching (RIE) of the substrate. In this way, the triangular patterns of the mask are transferred to the substrate through etched triangular pillars. Making an epoxy resin cast of the pillars, coated with metal films, allows us to invert the structure and obtain arrays of triangular holes within the metal. Both fabrication methods illustrate the preparation of large arrays of nanocavities within metal films at low cost. Gold films of different thicknesses were evaporated on top of hemispherical structures of epoxy resin with different radii, and the reflectance and transmittance were measured for optical wavelengths. Experimental results show that the reflectivity of coated hemispheres is lower than that of coated polystyrene spheres of the same size, for certain wavelength bands. The spectral position of these bands correlates with the size of the hemispheres. In contrast, etched structures on quartz coated with gold films exhibit low reflectance and transmittance values for all wavelengths measured. Low transmittance and reflectance indicate high absorbance, which can be utilized in experiments requiring light confinement.


2015 ◽  
Vol 6 ◽  
pp. 500-507 ◽  
Author(s):  
Cristiana Figus ◽  
Maddalena Patrini ◽  
Francesco Floris ◽  
Lucia Fornasari ◽  
Paola Pellacani ◽  
...  

Biosensing technologies based on plasmonic nanostructures have recently attracted significant attention due to their small dimensions, low-cost and high sensitivity but are often limited in terms of affinity, selectivity and stability. Consequently, several methods have been employed to functionalize plasmonic surfaces used for detection in order to increase their stability. Herein, a plasmonic surface was modified through a controlled, silica platform, which enables the improvement of the plasmonic-based sensor functionality. The key processing parameters that allow for the fine-tuning of the silica layer thickness on the plasmonic structure were studied. Control of the silica coating thickness was achieved through a combined approach involving sol–gel and dip-coating techniques. The silica films were characterized using spectroscopic ellipsometry, contact angle measurements, atomic force microscopy and dispersive spectroscopy. The effect of the use of silica layers on the optical properties of the plasmonic structures was evaluated. The obtained results show that the silica coating enables surface protection of the plasmonic structures, preserving their stability for an extended time and inducing a suitable reduction of the regeneration time of the chip.


2012 ◽  
Vol 24 (35) ◽  
pp. OP247-OP252 ◽  
Author(s):  
Jun Zhao ◽  
Chunjie Zhang ◽  
Paul V. Braun ◽  
Harald Giessen

2011 ◽  
Vol 279 ◽  
pp. 142-146
Author(s):  
Ning Shan ◽  
Guo Heng

Composite materials have many advantages such as big specific strength, high specific stiffness, good disrepair safety characteristic, large area molding conveniently and easy to forming complex shape. It becomes important structural materials of aero aircraft equipment necessarily and is used widely in aviation industry. Composite materials components of aero aircraft with complex and delicate structure chronically work in harsh environment. Early testing of its key component’s minute defects has been an urgent and necessary task. In this paper, its damage model and characteristic are analyzed and studied. Considering the limitation of composite materials structure’s detection methods at present, a number of existing problems are presented and development directions are pointed out. Laser ultrasound detection technique, continuous distribution sensing technique and optical fiber sensing technique are studied. The method of damage detection of aero aircraft’s composite materials components is put forward based on the organic combination of the three techniques. The results show that the system can be used to detect multi-ultrasound signals of large composite materials structure. Its structure is simple. It has small bulk and low cost. It is characterized by easy realization.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2020 ◽  
Vol 4 (1) ◽  
pp. 41-48
Author(s):  
Teodoro Astorga Amatosa ◽  
Michael E. Loretero

Bamboo is a lightweight and high-strength raw materials that encouraged researchers to investigate and explore, especially in the field of biocomposite and declared as one of the green-technology on the environment as fully accountable as eco-products. This research was to assess the technical feasibility of making single-layer experimental Medium-Density Particleboard panels from the bamboo waste of a three-year-old (Dendrocalamus asper). Waste materials were performed to produce composite materials using epoxy resin (C21H25C105) from a natural treatment by soaking with an average of pH 7.6 level of sea-water. Three different types of MDP produced, i.e., bamboo waste strip MDP (SMDP), bamboo waste chips MDP (CMDP) and bamboo waste mixed strip-chips MDP (MMDP) by following the same process. The experimental panels tested for their physical-mechanical properties according to the procedures defined by ASTM D1037-12. Conclusively, even the present study shows properties of MDP with higher and comparable to other composite materials; further research must be given better attention as potential substitute to be used as hardwood materials, especially in the production, design, and construction usage.


2006 ◽  
Vol 90 (20) ◽  
pp. 3557-3567 ◽  
Author(s):  
U. Gangopadhyay ◽  
K.H. Kim ◽  
S.K. Dhungel ◽  
U. Manna ◽  
P.K. Basu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document