Low-cost nanofabrication of large-area three-dimensional plasmonic nanostructures using nanospherical-lens lithography and hole-mask lithography (Conference Presentation)

Author(s):  
Chi-Ching Liu ◽  
Chang-Han Wang ◽  
Chia-Yi Lin ◽  
Szu-Yung Huang ◽  
Chen-Chung Yen ◽  
...  
2011 ◽  
Vol 211-212 ◽  
pp. 1105-1109
Author(s):  
Xi Qiu Fan

Traditional optical lithography techniques to fabricate three-dimensional (3D) nanostructures are complicated and time consuming. Due to the capability to replicate nanostructures repeatedly in a large area with high resolution and uniformity, nanoimprint (NI) has been recognized as one of the promising approaches to fabricate 3-D nanostructures with high throughput and low cost. This paper introduces a novel 3-D nanostructure fabrication method by nanoimprint on silicon substrate. Nanoscale gratings and microlens array are taken as examples of 3-D nanostructures fabricated by nanoimprint. High fidelity demonstrates the possibility of nanoimprint to fabricate 3-D nanostructures on silicon substrate.


Nanophotonics ◽  
2020 ◽  
Vol 9 (4) ◽  
pp. 943-951
Author(s):  
Pau Molet ◽  
Luz Karimé Gil-Herrera ◽  
Juan Luis Garcia-Pomar ◽  
Niccolò Caselli ◽  
Álvaro Blanco ◽  
...  

AbstractHigh-index dielectric nanostructures have emerged as an appealing complement to plasmonic nanostructures, offering similar light management capabilities at the nanoscale but free from the inherent optical losses. Despite the great interest in these all-dielectric architectures, their fabrication still requires cumbersome fabrication techniques that limit their implementation in many applications. Hence, the great interest in alternative scalable procedures. Among those, the fabrication of silicon spheres is at the forefront, with several routes available in the literature. However, the exploitation of the Mie modes sustained by these silicon resonators is limited over large areas by polydispersity or a lack of long-range order. Here, we present an all-dielectric metamaterial fabricated with a low cost and highly scalable technique: a combination of soft imprinting nanolithography and chemical vapor deposition. The resulting all-dielectric metasurface is composed of an array of silicon hemispheres on top of a high refractive index dielectric substrate. This architecture allows the exploitation of high-quality Mie resonances at a large scale due to the high monodispersity of the hemispheres organized in a single crystal two-dimensional lattice. The optical response of the metasurface can be engineered by the design parameters of the nanoimprinted structure. We further demonstrate the potential of this platform to enhance light emission by coupling dye molecules to the sustained Mie resonances and measuring both an eight-fold amplified signal and a triple lifetime reduction.


2021 ◽  
Vol 2083 (3) ◽  
pp. 032004
Author(s):  
Kuo Chen ◽  
Ke Chen ◽  
Lei Wang

Abstract The online monitoring network of marine ranching ecological environment is one of the important development directions of marine ranching construction. Traditional marine monitoring systems are large in size, high in power consumption, and expensive. The investment in pasture construction cannot achieve a large amount of investment to form a monitoring network. There is an urgent need for a low-cost marine monitoring method that can afford a large area and high spatial density. This problem cannot be realized in traditional technology. Based on MEMS technology, this paper develops low-cost monitoring small floats that can be deployed in a large number of “swarm bees”, with high spatial and temporal resolution, and take into account environmental and biological population characteristics monitoring. Each small float is connected to a multi-node sensor chain and video monitoring node. The low-cost surface and underwater wireless transmission and wireless communication means are used for networking observation, which proposes a brand-new solution for the construction of the intelligent three-dimensional monitoring of the marine pasture environment.


2012 ◽  
Vol 24 (35) ◽  
pp. OP247-OP252 ◽  
Author(s):  
Jun Zhao ◽  
Chunjie Zhang ◽  
Paul V. Braun ◽  
Harald Giessen

2014 ◽  
Vol 5 ◽  
pp. 577-586 ◽  
Author(s):  
Jun Zhao ◽  
Bettina Frank ◽  
Frank Neubrech ◽  
Chunjie Zhang ◽  
Paul V Braun ◽  
...  

Many nano-optical applications require a suitable nanofabrication technology. Hole-mask colloidal nanolithography has proven to be a low-cost and large-area alternative for the fabrication of complex plasmonic nanostructures as well as metamaterials. In this paper, we describe the fabrication process step by step. We manufacture a variety of different plasmonic structures ranging from simple nano-antennas over complex chiral structures to stacked composite materials for applications such as sensing. Additionally, we give details on the control of the nanostructure lateral density which allows for the multilayer-fabrication of complex nanostructures. In two accompanying movies, the fabrication strategy is explained and details are being demonstrated in the lab. The movies can be found at the website of Beilstein TV.


2021 ◽  
Vol 59 (12) ◽  
pp. 880-885
Author(s):  
Tae Wan Park ◽  
Woon Ik Park

Nanopatterning methods for pattern formation of high-resolution nanostructures are essential for the fabrication of various electronic devices, including wearable displays, high-performance semiconductor devices, and smart biosensor systems. Among advanced nanopatterning methods, nanotransfer printing (nTP) has attracted considerable attention due to its process simplicity, low cost, and great pattern resolution. However, to diversify the pattern geometries for wide device applications, more effective and useful nTP based patterning methods must be developed. Here, we introduce a facile and practical nanofabrication method to obtain various three-dimensional (3D) ultra-thin metallic films via thermally assisted nTP (T-nTP). We show how to generate surface-wrinkled 3D nanostructures, such as angular line, concave-valley, and convex-hill structures. We also demonstrate the principle for effectively forming 3D nanosheets by T-nTP, using Si master molds with a low aspect ratio (A/R ≤ 1). In addition, we explain how to obtain a 3D wavy structure when using a mold with high A/R (≥ 3), based on the isotropic deposition process. We also produced a highly ordered 3D Au nanosheet on flexible PET over a large area (> 15 µm). We expect that this T-nTP approach using various Si mold shapes will be applied for the useful fabrication of various metal/oxide nanostructured devices with high surface area.


2020 ◽  
Vol 90 (3) ◽  
pp. 30502
Author(s):  
Alessandro Fantoni ◽  
João Costa ◽  
Paulo Lourenço ◽  
Manuela Vieira

Amorphous silicon PECVD photonic integrated devices are promising candidates for low cost sensing applications. This manuscript reports a simulation analysis about the impact on the overall efficiency caused by the lithography imperfections in the deposition process. The tolerance to the fabrication defects of a photonic sensor based on surface plasmonic resonance is analysed. The simulations are performed with FDTD and BPM algorithms. The device is a plasmonic interferometer composed by an a-Si:H waveguide covered by a thin gold layer. The sensing analysis is performed by equally splitting the input light into two arms, allowing the sensor to be calibrated by its reference arm. Two different 1 × 2 power splitter configurations are presented: a directional coupler and a multimode interference splitter. The waveguide sidewall roughness is considered as the major negative effect caused by deposition imperfections. The simulation results show that plasmonic effects can be excited in the interferometric waveguide structure, allowing a sensing device with enough sensitivity to support the functioning of a bio sensor for high throughput screening. In addition, the good tolerance to the waveguide wall roughness, points out the PECVD deposition technique as reliable method for the overall sensor system to be produced in a low-cost system. The large area deposition of photonics structures, allowed by the PECVD method, can be explored to design a multiplexed system for analysis of multiple biomarkers to further increase the tolerance to fabrication defects.


2020 ◽  
Vol 64 (5) ◽  
pp. 50405-1-50405-5
Author(s):  
Young-Woo Park ◽  
Myounggyu Noh

Abstract Recently, the three-dimensional (3D) printing technique has attracted much attention for creating objects of arbitrary shape and manufacturing. For the first time, in this work, we present the fabrication of an inkjet printed low-cost 3D temperature sensor on a 3D-shaped thermoplastic substrate suitable for packaging, flexible electronics, and other printed applications. The design, fabrication, and testing of a 3D printed temperature sensor are presented. The sensor pattern is designed using a computer-aided design program and fabricated by drop-on-demand inkjet printing using a magnetostrictive inkjet printhead at room temperature. The sensor pattern is printed using commercially available conductive silver nanoparticle ink. A moving speed of 90 mm/min is chosen to print the sensor pattern. The inkjet printed temperature sensor is demonstrated, and it is characterized by good electrical properties, exhibiting good sensitivity and linearity. The results indicate that 3D inkjet printing technology may have great potential for applications in sensor fabrication.


2017 ◽  
Vol 68 (3) ◽  
pp. 453-458 ◽  
Author(s):  
Daniel Besnea ◽  
Alina Spanu ◽  
Iuliana Marlena Prodea ◽  
Gheorghita Tomescu ◽  
Iolanda Constanta Panait

The paper points out the advantages of rapid prototyping for improving the performances/constructive optimization of mixing devices used in process industries, here exemplified to propeller types ones. The multidisciplinary optimization of the propeller profile affords its design using parametric CAD methods. Starting from the mathematical curve equations proposed for the blade profile, it was determined its three-dimensional virtual model. The challenge has been focused on the variation of propeller pitch and external diameter. Three dimensional ranges were manufactured using the additive manufacturing process with Marker Boot 3D printer. The mixing performances were tested on the mixing equipment measuring the minimum rotational speed and the correspondent shaft torque for complete suspension achieved for each of the three models. The virtual and rapid prototyping method is newly proposed by the authors to obtain the basic data for scale up of the mixing systems, in the case of flexible production (of low quantities), in which both the nature and concentration of the constituents in the final product varies often. It is an efficient and low cost method for the rapid identification of the optimal mixing device configuration, which contributes to the costs reduction and to the growing of the output.


Sign in / Sign up

Export Citation Format

Share Document