scholarly journals Nanomechanical humidity detection through porous alumina cantilevers

2015 ◽  
Vol 6 ◽  
pp. 1332-1337 ◽  
Author(s):  
Olga Boytsova ◽  
Alexey Klimenko ◽  
Vasiliy Lebedev ◽  
Alexey Lukashin ◽  
Andrey Eliseev

We present here the behavior of the resonance frequency of porous anodic alumina cantilever arrays during water vapor adsorption and emphasize their possible use in the micromechanical sensing of humidity levels at least in the range of 10–22%. The sensitivity of porous anodic aluminium oxide cantilevers (Δf/Δm) and the humidity sensitivity equal about 56 Hz/pg and about 100 Hz/%, respectively. The approach presented here for the design of anodic alumina cantilever arrays by the combination of anodic oxidation and photolithography enables easy control over porosity, surface area, geometric and mechanical characteristics of the cantilever arrays for micromechanical sensing.

1987 ◽  
Vol 59 (2) ◽  
pp. 67-72
Author(s):  
Raina Niskanen ◽  
Väinö Mäntylahti

The specific surface area of 60 mineral soil samples estimated by water vapor adsorption at 20 % relative humidity ranged from 12.1 ± 3.6 to 225.1 ±18.4 m2/g. Clay (range 1—72 %) and organic carbon content (0.7—14.6 %) together explained 84 % of the variation in the surface area. The regression equation predicting the specific surface area of soil was surface area (m2/g) =2.69+ 1.23clay-% +8.69org.C-%.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Jin-Young Jung ◽  
Hye-Ryeon Yu ◽  
Se Jin In ◽  
Young Chul Choi ◽  
Young-Seak Lee

The surfaces of carbon molecular sieves (CMSs) were thermally fluorinated to adsorb water vapor. The fluorination of the CMSs was performed at various temperatures (100, 200, 300, and 400°C) to investigate the effects of the fluorine gas (F2) content on the surface properties. Fluorine-related functional groups formed were effectively generated on the surface of the CMSs via thermal fluorination process, and the total pore volume and specific surface area of the pores in the CMSs increased during the thermal fluorination process, especially those with diameters ≤ 8 Å. The water vapor adsorption capacity of the thermally fluorinated CMSs increased compared with the as-received CMSs, which is attributable to the increased specific surface area and to the semicovalent bonds of the C–F groups.


2003 ◽  
Vol 260 (1) ◽  
pp. 26-35 ◽  
Author(s):  
Shan-Li Wang ◽  
Cliff T Johnston ◽  
David L Bish ◽  
Joe L White ◽  
Stanley L Hem

2020 ◽  
Vol 38 (1-2) ◽  
pp. 60-76 ◽  
Author(s):  
Hong Zhao ◽  
Qiongfen Yu ◽  
Ming Li ◽  
Shengnan Sun

In this study, activated carbons without any chemical residue were prepared from walnut shells. The preparation method in a tube furnace included a pyrolysis carbonization process and a CO2 activation process. The influences of activation temperature and holding time on the specific surface area, yield, and pore structure were investigated. Adsorption performance of water vapor was also examined in details. Thermogravimetric analysis, N2 adsorption–desorption isotherm, and scanning electron microscope were used to characterize samples. The result shows that the activation energy at different heating rates varies from 30.16 to 64.86 kJ/mol. The highest water vapor adsorption capacity of the sample is 0.3824 g/g and it takes only 30 min to realize regeneration. And the maximum Brunauer–Emmett–Teller specific surface area of 1228 m2/g also occurs in this optimal preparation condition. CO2 physical activation method was found to have a positive effect on pore structure development of activated carbon for water vapor adsorption.


2007 ◽  
Vol 7 (1 & 2) ◽  
pp. 137
Author(s):  
Tran Dai Lam ◽  
Pham Thanh Huyen ◽  
Nguyen Han Long

This paper shows the results of the peptizability of boehmite and its application for the formation of γ-Al2O3 in spherical shape. The obtained γ-Al2O3 in spherical shape have high mechanical strength and high surface area. The water vapor adsorption ability of sphere of γ-Al2O3 has also been determined. The γ-Al2O3 in spherical shape can adsorb moisture up to 65% of their weight.


Author(s):  
Aasif A. Dabbawala ◽  
K. Suresh kumar Reddy ◽  
Hemant Mittal ◽  
Yasser Al Wahedi ◽  
Balasubramanian V. Vaithilingam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document