scholarly journals The capillary adhesion technique: a versatile method for determining the liquid adhesion force and sample stiffness

2015 ◽  
Vol 6 ◽  
pp. 11-18 ◽  
Author(s):  
Daniel Gandyra ◽  
Stefan Walheim ◽  
Stanislav Gorb ◽  
Wilhelm Barthlott ◽  
Thomas Schimmel

We report a novel, practical technique for the concerted, simultaneous determination of both the adhesion force of a small structure or structural unit (e.g., an individual filament, hair, micromechanical component or microsensor) to a liquid and its elastic properties. The method involves the creation and development of a liquid meniscus upon touching a liquid surface with the structure, and the subsequent disruption of this liquid meniscus upon removal. The evaluation of the meniscus shape immediately before snap-off of the meniscus allows the quantitative determination of the liquid adhesion force. Concurrently, by measuring and evaluating the deformation of the structure under investigation, its elastic properties can be determined. The sensitivity of the method is remarkably high, practically limited by the resolution of the camera capturing the process. Adhesion forces down to 10 µN and spring constants up to 2 N/m were measured. Three exemplary applications of this method are demonstrated: (1) determination of the water adhesion force and the elasticity of individual hairs (trichomes) of the floating fern Salvinia molesta. (2) The investigation of human head hairs both with and without functional surface coatings (a topic of high relevance in the field of hair cosmetics) was performed. The method also resulted in the measurement of an elastic modulus (Young’s modulus) for individual hairs of 3.0 × 105 N/cm2, which is within the typical range known for human hair. (3) Finally, the accuracy and validity of the capillary adhesion technique was proven by examining calibrated atomic force microscopy cantilevers, reproducing the spring constants calibrated using other methods.

Author(s):  
Hartmut R. Fischer ◽  
Edwin R. M. Gelinck

The tendency of smooth surfaces to stick spontaneously to each other is becoming a serious problem, with: a) the increasing quality in surface finish for many components and systems, b) on miniaturization in mechanical components, and c) in demanded precision of positioning of parts in high-end equipment machines and systems. Surfaces tend to be made smoother in order to gain flatness or in order to fulfill the need for more precise and reproducible positioning of parts. Adhesion or even sticking of the surfaces is a major showstopper for these applications. There are several measures that can be taken in order to reduce spontaneous adhesion. Quantification of the effectiveness of the chosen solution is most often done using an AFM with probes varying from 1 nm to 8 micron of contact diameter. A serious disadvantage in measuring adhesion by sharp tips is the wear of the tips. Sharp tips wear easily, resulting in undefined contact areas. When the real area of contact is not well defined, the quantification of the adhesion force is not significant. In the current study results of AFM measurements from literature with different tip diameters of colloidal probes are compared with measurements we performed using AFM cantilevers with a plateau tip and using probes from large spheres using an alternative setup (UNAT). These methods give results that are in good agreement with values found in literature. Large contacting surface enhance the quality of the measured adhesion values. Another part of the study deals with a deliberately roughening of smooth surfaces to minimize (spontaneous) adhesion. Good agreement has been found with existing results. For the use of larger surfaces it is important that the surfaces to be tested are extremely clean. Particles on smooth surface do influence the measurements quite easily. Especially for larger areas, the possibility of encountering particles on the surface are more likely, when particles are present. For the measurements in this study a lot of care has been taken therefore to remove contamination: particles as well as contamination of organic origin.


2018 ◽  
Vol 233 ◽  
pp. 00025
Author(s):  
P.V. Polydoropoulou ◽  
K.I. Tserpes ◽  
Sp.G. Pantelakis ◽  
Ch.V. Katsiropoulos

In this work a multi-scale model simulating the effect of the dispersion, the waviness as well as the agglomerations of MWCNTs on the Young’s modulus of a polymer enhanced with 0.4% MWCNTs (v/v) has been developed. Representative Unit Cells (RUCs) have been employed for the determination of the homogenized elastic properties of the MWCNT/polymer. The elastic properties computed by the RUCs were assigned to the Finite Element (FE) model of a tension specimen which was used to predict the Young’s modulus of the enhanced material. Furthermore, a comparison with experimental results obtained by tensile testing according to ASTM 638 has been made. The results show a remarkable decrease of the Young’s modulus for the polymer enhanced with aligned MWCNTs due to the increase of the CNT agglomerations. On the other hand, slight differences on the Young’s modulus have been observed for the material enhanced with randomly-oriented MWCNTs by the increase of the MWCNTs agglomerations, which might be attributed to the low concentration of the MWCNTs into the polymer. Moreover, the increase of the MWCNTs waviness led to a significant decrease of the Young’s modulus of the polymer enhanced with aligned MWCNTs. The experimental results in terms of the Young’s modulus are predicted well by assuming a random dispersion of MWCNTs into the polymer.


2020 ◽  
Vol 11 (1) ◽  
pp. 101
Author(s):  
Carlo Boursier Niutta

A new approach for the nondestructive determination of the elastic properties of composite laminates is presented. The approach represents an improvement of a recently published experimental methodology based on the Impulse Excitation Technique, which allows nondestructively assessing local elastic properties of composite laminates by isolating a region of interest through a proper clamping system. Different measures of the first resonant frequency are obtained by rotating the clamping system with respect to the material orientation. Here, in order to increase the robustness of the inverse problem, which determines the elastic properties from the measured resonant frequencies, information related to the modal shape is retained by considering the effect of an additional concentrated mass on the first resonant frequency. According to the modal shape and the position of the mass, different values of the first resonant frequency are obtained. Here, two positions of the additional mass, i.e., two values of the resonant frequency in addition to the unloaded frequency value, are considered for each material orientation. A Rayleigh–Ritz formulation based on higher order theory is adopted to compute the first resonant frequency of the clamped plate with concentrated mass. The elastic properties are finally determined through an optimization problem that minimizes the discrepancy on the frequency reference values. The proposed approach is validated on several materials taken from the literature. Finally, advantages and possible limitations are discussed.


1970 ◽  
Vol 5 (1) ◽  
pp. 133-140 ◽  
Author(s):  
P. Quittner ◽  
E. Szabó ◽  
G. Perneczki ◽  
A. Major
Keyword(s):  

2012 ◽  
Vol 45 ◽  
pp. S19
Author(s):  
A. Wittek ◽  
P. Bihari ◽  
A. Shelke ◽  
T. Nwe ◽  
K. Nelson ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document