scholarly journals Morphological and structural characterization of single-crystal ZnO nanorod arrays on flexible and non-flexible substrates

2015 ◽  
Vol 6 ◽  
pp. 720-725 ◽  
Author(s):  
Omar F Farhat ◽  
Mohd M Halim ◽  
Mat J Abdullah ◽  
Mohammed K M Ali ◽  
Nageh K Allam

We report a facile synthesis of zinc oxide (ZnO) nanorod arrays using an optimized, chemical bath deposition method on glass, PET and Si substrates. The morphological and structural properties of the ZnO nanorod arrays were investigated using various techniques such as field emission scanning electron microscopy (FESEM) and X-ray diffraction (XRD) measurements, which revealed the formation of dense ZnO nanorods with a single crystal, hexagonal wurtzite structure. The aspect ratio of the single-crystal ZnO nanorods and the growth rate along the (002) direction was found to be sensitive to the substrate type. The lattice constants and the crystallite size of the fabricated ZnO nanorods were calculated based on the XRD data. The obtained results revealed that the increase in the crystallite size is strongly associated with the growth conditions with a minor dependence on the type of substrate. The Raman spectroscopy measurements confirmed the existence of a compressive stress in the fabricated ZnO nanorods. The obtained results illustrated that the growth of high quality, single-crystal ZnO nanorods can be realized by adjusting the synthesis conditions.

2012 ◽  
Vol 622-623 ◽  
pp. 855-859
Author(s):  
Xiu Ming Ren ◽  
He Qiu Zhang ◽  
Li Zhong Hu ◽  
Jiu Yu Ji ◽  
Yang Li ◽  
...  

ZnO nanorod arrays were synthesized by hydrothermal method under different growth times. The effect of growth time on nanorods morphology was investigated systematically. Results illustrate that ZnO nanorods with hexagonal wurtzite structure grow vertically on the Si substrates. The length of the ZnO nanorods increases with increasing growth time. In our experiments, quenching stage plays a key role in forming the tips of nanorods. With growth time no more than 1h, the solution is in a continuous heating state and doesn’t reach the set temperature 180oC. Therefore, longer growth time means higher solution temperature which in turn increases cooling rate during quenching stage, as a consequence, to a smaller mean crystal size in the nanorods tips.


2013 ◽  
Vol 421 ◽  
pp. 324-328
Author(s):  
Kang Zhao ◽  
Zhi Ming Wu ◽  
Rong Tang

well-aligned ZnO nanorod arrays (ZNRAs) grown on the ZnO seed layers coated p-silicon (p-Si) substrates in various times from 1.5 to 5 hr have been fabricated from aqueous solutions at low temperature. Morphologies, crystalline structure and optical transmission were investigated by a scanning electron microscope (SEM) and X-ray diffraction (XRD), respectively. The results showed that ZNRAs grew vertically from the substrates, having uniform thickness and length distribution, the average diameters and length of ZnO nanorods increased with increasing growth time below 3 hr. The XRD results showed that ZnO nanorods were wurtzite-structured (hexagonal) ZnO.


Micromachines ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 622 ◽  
Author(s):  
Wei Wang ◽  
Shoulong Hui ◽  
Fuchun Zhang ◽  
Xiaoyang Wang ◽  
Shuili Zhang ◽  
...  

Zn1-xNixO nanorod arrays were prepared on Si substrates by magnetron sputtering and hydrothermal methods at 100 °C. We studied the effects of doped concentration and hydrothermal growth conditions on the crystal structure, morphology, photoluminescence, and magnetic properties of Zn1-xNixO nanorod arrays. The research results show that the Zn1-xNixO nanorod have the hexagonal wurtzite structure without the appearance of the second phase, and all samples have a highly preferred orientation of a (002) crystal face. The Zn1-xNixO nanorod arrays exhibit obvious room temperature ferromagnetism with saturation magnetization at 4.2 × 10−4 emu/g, the residual magnetization is 1.3 × 10−4 emu/g and the coercive field is 502 Oe, and also excellent luminescent properties with seven times greater luminous intensity than that of ZnO nanorod arrays. The redshift of the ultraviolet emission peak was found by Ni2+ doping. We further explained the source and essence of the magnetic properties of Zn1-xNixO nanorod arrays and deemed that the magnetic moment mainly comes from the hybrid electron exchange of O 2p and Ni 3d state.


2013 ◽  
Vol 669 ◽  
pp. 302-306
Author(s):  
Tian Ning Xu ◽  
Zhong Lu ◽  
Cheng Hua Sui ◽  
Hui Zhen Wu

Zinc oxide (ZnO) nanorod arrays were fabricated on ZnO:Al seeded Si substrates with various reaction temperatures using a low temperature hydrothermal method. The morphology and structure of ZnO nanorod arrays were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). It reveals that the ZnO nanorods grow vertically on Si surface with (002) preferential orientation. The transmittance spectra show the ZnO nanorod arrays fabricated at low temperatures have high transmittance in the visible region and decrease with reaction temperature increasing. Moreover, the same trend was also observed in the reflectance spectra of the ZnO nanorod arrays. The optimal reaction temperature is of 120 °C for ZnO nanorod arrays with high transmittance (~80%) and low reflectance (~10%) in the visible region. The superior optical properties make ZnO nanorod arrays promising for applications as transparent electrodes.


2020 ◽  
Vol 20 (6) ◽  
pp. 3512-3518
Author(s):  
Saleh Khan ◽  
Xiao-He Liu ◽  
Xi Jiang ◽  
Qing-Yun Chen

Highly efficient and effective porous ZnO nanorod arrays were fabricated by annealing ZnO nanorod arrays grown on a substrate using a simple hydrothermal method. The annealing had a positive effect on the nanorod morphology, structure and optical properties. The porosity was closely related to the annealing temperature. After heating at 450 °C, pores appeared on the nanorods. It was demonstrated that the porosity could be exploited to improve the visible light absorption of ZnO and reduce the bandgap from 3.11 eV to 2.99 eV. A combination of improved charge separation and transport of the heat-treated ZnO thus led to an increase in the photoelectrochemical properties. At an irradiation intensity of 100 mW/cm−2, the photocurrent density of the porous nanorod array was approximately 1.3 mA cm−2 at 1.2 V versus Ag/AgCl, which was five times higher than that of the ZnO nanorods. These results revealed the synthesis of promising porous ZnO nanorods for photoelectrochemical applications.


CrystEngComm ◽  
2017 ◽  
Vol 19 (41) ◽  
pp. 6085-6088 ◽  
Author(s):  
Amany Ali ◽  
DongBo Wang ◽  
JinZhong Wang ◽  
ShuJie Jiao ◽  
FengYun Guo ◽  
...  

The ultraviolet luminescence of ZnO nanorods was greatly enhanced through introducing an AlN buffer layer.


2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Da Zhang ◽  
Yuanyi Wang ◽  
Liang Chen ◽  
Chengjing Xiao ◽  
Jing Feng ◽  
...  

A simple two-step method of growing ZnO nanorod arrays on the surface of BiOI nanosheets was developed under mild environment. The hierarchical structure of ZnO arrays@BiOI nanosheets was characterized by various measurements like X-ray powder diffraction, scanning electron microscopy, transmission electron microscopy, and energy-dispersive X-ray detector. The optical absorption of the ZnO arrays@BiOI nanosheets composite was investigated by UV-Vis diffuse reflectance spectra. The photocatalytic degradation of methanol orange under visible light shows that the obtained ZnO arrays@BiOI nanosheets heterostructures exhibit enhanced photocatalytic activity, contrasting to the sum of BiOI nanosheets and ZnO nanorods. The mechanism of the photocatalytic process was discussed. This method of growing ZnO nanorod arrays on other nanosheets also provides a potential method to fabricating other complex structures.


RSC Advances ◽  
2014 ◽  
Vol 4 (84) ◽  
pp. 44452-44456 ◽  
Author(s):  
Y. Yin ◽  
Y. Sun ◽  
M. Yu ◽  
X. Liu ◽  
B. Yang ◽  
...  

Annealing or plasma pre-treating the ZnO seed layer influences the nucleation and hydrothermal growth of ZnO nanorods and their photoluminescence.


2016 ◽  
Vol 675-676 ◽  
pp. 134-137
Author(s):  
Phattharaphong Khamkhom ◽  
Mati Horprathum ◽  
Pitak Eiamchai ◽  
Chanunthorn Chananonnawathorn ◽  
Sukon Kalasung ◽  
...  

In this study, we fabricated the zinc oxide (ZnO) nanorods arrays by hydrothermal technique on indium doped tin oxide (ITO) substrate with different concentration of the precursor with zinc nitrate and hexamethyleneteramine (HMTA) in distilled water. Structure, morphology and optical properties of ZnOnanorods on ITO substrate were characterized by x-ray diffractometer, field-emission scanning electron microscope and spectrophotometer, respectively. The ZnO nanorod arrays showing preferentially oriented in the (001) direction and with a wurtzite structure. The scanning electron microscopy results showed that the hexagonal shape ZnO nanorods. It was found that the diameter, length and density of the ZnO nanorods arrays were strongly influenced by the precursor concentration.


2010 ◽  
Vol 123-125 ◽  
pp. 811-814 ◽  
Author(s):  
Yi Su ◽  
Xiao Ping Zou ◽  
Xiang Min Meng ◽  
Gong Qing Teng ◽  
Gang Qiang Yang ◽  
...  

We are reporting here on an inexpensive and facile fabrication method for ZnO nanorod arrays by hydrothermal growth at low temperature (90°C). In our experiment, ZnO nanostructures were grown on glass substrate using an equimolar (0.1M) aqueous solution of Zn(NO3)2•6H2O (zinc nitrate hexahydrate) and C6H12N4 (HMTA) as precursors solution, and using ammonia solution to controlling the pH levels. It enable easily obtained arrayed ZnO nanorods on substrate, and nanowires which grown on nanorod arrays were identified after about 1 month in the air. The growth process of nanorods and the formation mechanism of nanowires were investigated.


Sign in / Sign up

Export Citation Format

Share Document