scholarly journals Preparation of thick silica coatings on carbon fibers with fine-structured silica nanotubes induced by a self-assembly process

2017 ◽  
Vol 8 ◽  
pp. 1145-1155 ◽  
Author(s):  
Benjamin Baumgärtner ◽  
Hendrik Möller ◽  
Thomas Neumann ◽  
Dirk Volkmer

A facile method to coat carbon fibers with a silica shell is presented in this work. By immobilizing linear polyamines on the carbon fiber surface, the high catalytic activity of polyamines in the sol–gel-processing of silica precursors is used to deposit a silica coating directly on the fiber’s surface. The surface localization of the catalyst is achieved either by attaching short-chain polyamines (e.g., tetraethylenepentamine) via covalent bonds to the carbon fiber surface or by depositing long-chain polyamines (e.g., linear poly(ethylenimine)) on the carbon fiber by weak non-covalent bonding. The long-chain polyamine self-assembles onto the carbon fiber substrate in the form of nanoscopic crystallites, which serve as a template for the subsequent silica deposition. The silicification at close to neutral pH is spatially restricted to the localized polyamine and consequently to the fiber surface. In case of the linear poly(ethylenimine), silica shells of several micrometers in thickness can be obtained and their morphology is easily controlled by a considerable number of synthesis parameters. A unique feature is the hierarchical biomimetic structure of the silica coating which surrounds the embedded carbon fiber by fibrillar and interconnected silica fine-structures. The high surface area of the nanostructured composite fiber may be exploited for catalytic applications and adsorption purposes.

RSC Advances ◽  
2016 ◽  
Vol 6 (35) ◽  
pp. 29428-29436 ◽  
Author(s):  
Xiuping Zhang ◽  
Liu Liu ◽  
Ming Li ◽  
Yanjie Chang ◽  
Lei Shang ◽  
...  

APMA functionalized CFs can significantly improve the interfacial adhesion properties of the carbon fiber reinforced vinyl ester resin composites.


e-Polymers ◽  
2014 ◽  
Vol 14 (2) ◽  
pp. 145-150 ◽  
Author(s):  
Kaiqiang Sui ◽  
Qingbo Zhang ◽  
Yingying Liu ◽  
Lei Tan ◽  
Li Liu

AbstractGrafting hyperbranched polyglycerols onto a carbon fiber surface is done in an attempt to improve the interfacial and impact properties between carbon fiber and epoxy resin. Scanning electron microscopy (SEM), thermal gravimetric analysis (TGA), X-ray photoelectron spectroscopy (XPS) and dynamic contact angle analysis were performed to characterize the carbon fibers. The TGA result shows that the mass fraction of the hyperbranched polyglycerols grafted onto the carbon fibers surface was 9.03%. The SEM results indicate that the hyperbranched polyglycerols have been grafted onto the carbon surface and that the surface roughness of the carbon fiber significantly increased. The XPS result indicates that oxygen-containing functional groups obviously increased after modification. Dynamic contact angle analysis indicates that the surface energy of modified carbon fibers increased significantly compared with the untreated ones. Results of the mechanical property tests show that interfacial shear strength increased from 59.86 to 80.16 MPa, interlaminar shear strength increased from 57.57 to 73.49 MPa and impact strength simultaneously increased from 2.52 to 3.52 J.


2021 ◽  
Vol 899 ◽  
pp. 540-547
Author(s):  
Aues A. Beev ◽  
Dzhul’etta A. Beeva ◽  
M.U. Shokumova ◽  
M.R. Tlenkopachev ◽  
Muaed M. Oshkhunov

The paper investigates the processes of carbon fiber surface treatment and their influence on the properties of polyetheretherketone composites. It has been shown that preliminary thermal activation of carbon fiber followed by treatment with a dressing agent - polyhydroxyether makes it possible to create polyetheretherketone composite carbon-filled materials with an increased level of physical and mechanical properties.


1990 ◽  
Vol 189 ◽  
Author(s):  
L. T. Drzal ◽  
K. J. Hook ◽  
R. K. Agrawal

ABSTRACTThe effect of microwave processing on the chemical interactions occurring between the carbon fiber surface and the epoxy matrix constituents was investigated using X-ray Photoelectron Spectroscopy (XPS). Monofunctional model compounds of the matrix constituents were exposed to the carbon fibers at temperatures similar to those encountered during composite processing. The microwave treatment resulted in a substantial increase in the amount of chemical interaction between the fiber surface and the epoxy resin but little difference for the amine component of the matrix when compared to thermal processing. An epoxy resin/amine hardener adduct compound used to determine the hydroxyl group interaction with the carbon fiber surface indicated a low level of chemical interaction of the hydroxyl with the carbon fiber surface under the conditions used in this study.


RSC Advances ◽  
2015 ◽  
Vol 5 (92) ◽  
pp. 75735-75745 ◽  
Author(s):  
Wenxin Fan ◽  
Yanxiang Wang ◽  
Jiqiang Chen ◽  
Yan Yuan ◽  
Aiguo Li ◽  
...  

Controllable growth of CNTs/CNFs on carbon fiber surface without degradation of tensile strength of carbon fibers.


2011 ◽  
Vol 335-336 ◽  
pp. 96-100
Author(s):  
Cun Zhou ◽  
Jian Li Cheng ◽  
Yu Sun

Abstract: An epoxy based nano-SiO2/TiO2/polyimide hybrid enhanced sizing for carbon fiber was prepared by modified SiO2/TiO2precursor in PAA collosol with silane couple agent(WD-50) and eligibility surfactant via sol-gel reaction, and both ultrasonic cavitation and multi-complex technology were used during the process. The properties of PAA-SiO2-TiO2hybrid sizing and micro-morphology of carbon fiber surface were analyzed by FTIR, DSC, Particle Size Analyzer and STM. The results indicated that nanoscale SiO2•TiO2particles dispersed in the hybrid sizing film homogeneously, and a layer with nano particles was formed on carbon fiber surface after treated by the hybrid enhanceing sizing. The roughness was increased and interface properties of carbon fiber would be improved. At the same time both tensile strength and the interlaminar shear strength were increased obviously.


Sign in / Sign up

Export Citation Format

Share Document