scholarly journals Coupling biocatalysis with high-energy flow reactions for the synthesis of carbamates and β-amino acid derivatives

2021 ◽  
Vol 17 ◽  
pp. 379-384
Author(s):  
Alexander Leslie ◽  
Thomas S Moody ◽  
Megan Smyth ◽  
Scott Wharry ◽  
Marcus Baumann

A continuous flow process is presented that couples a Curtius rearrangement step with a biocatalytic impurity tagging strategy to produce a series of valuable Cbz-carbamate products. Immobilized CALB was exploited as a robust hydrolase to transform residual benzyl alcohol into easily separable benzyl butyrate. The resulting telescoped flow process was effectively applied across a series of acid substrates rendering the desired carbamate structures in high yield and purity. The derivatization of these products via complementary flow-based Michael addition reactions furthermore demonstrated the creation of β-amino acid species. This strategy thus highlights the applicability of this work towards the creation of important chemical building blocks for the pharmaceutical and speciality chemical industries.

Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3717
Author(s):  
Adiel Mauro Calascibetta ◽  
Sara Mattiello ◽  
Alessandro Sanzone ◽  
Irene Facchinetti ◽  
Mauro Sassi ◽  
...  

Direct (hetero)arylation (DHA) is playing a key role in improving the efficiency and atom economy of C–C cross coupling reactions, so has impacts in pharmaceutical and materials chemistry. Current research focuses on further improving the generality, efficiency and selectivity of the method through careful tuning of the reaction conditions and the catalytic system. Comparatively fewer studies are dedicated to the replacement of the high-boiling-point organic solvents dominating the field and affecting the overall sustainability of the method. We show herein that the use of a 9:1 v/v emulsion of an aqueous Kolliphor 2 wt% solution while having toluene as the reaction medium enables the preparation of relevant examples of thiophene-containing π-conjugated building blocks in high yield and purity.


Author(s):  
Charlotte Wiles ◽  
Marcus J Hammond ◽  
Paul Watts

We report the use of an immobilised form of Candida antarctica lipase B, Novozym® 435, in a preliminary investigation into the development of a continuous flow reactor capable of performing the chemo-enzymatic oxidation of alkenes in high yield and purity, utilising the commercially available oxidant hydrogen peroxide (100 volumes). Initial investigations focussed on the lipase-mediated oxidation of 1-methylcyclohexene, with the optimised reaction conditions subsequently employed for the epoxidation of an array of aromatic and aliphatic alkenes in 97.6 to 99.5% yield and quantitative purity.


2020 ◽  
Vol 15 ◽  
Author(s):  
Affan Alim ◽  
Abdul Rafay ◽  
Imran Naseem

Background: Proteins contribute significantly in every task of cellular life. Their functions encompass the building and repairing of tissues in human bodies and other organisms. Hence they are the building blocks of bones, muscles, cartilage, skin, and blood. Similarly, antifreeze proteins are of prime significance for organisms that live in very cold areas. With the help of these proteins, the cold water organisms can survive below zero temperature and resist the water crystallization process which may cause the rupture in the internal cells and tissues. AFP’s have attracted attention and interest in food industries and cryopreservation. Objective: With the increase in the availability of genomic sequence data of protein, an automated and sophisticated tool for AFP recognition and identification is in dire need. The sequence and structures of AFP are highly distinct, therefore, most of the proposed methods fail to show promising results on different structures. A consolidated method is proposed to produce the competitive performance on highly distinct AFP structure. Methods: In this study, we propose to use machine learning-based algorithms Principal Component Analysis (PCA) followed by Gradient Boosting (GB) for antifreeze protein identification. To analyze the performance and validation of the proposed model, various combinations of two segments composition of amino acid and dipeptide are used. PCA, in particular, is proposed to dimension reduction and high variance retaining of data which is followed by an ensemble method named gradient boosting for modelling and classification. Results: The proposed method obtained the superfluous performance on PDB, Pfam and Uniprot dataset as compared with the RAFP-Pred method. In experiment-3, by utilizing only 150 PCA components a high accuracy of 89.63 was achieved which is superior to the 87.41 utilizing 300 significant features reported for the RAFP-Pred method. Experiment-2 is conducted using two different dataset such that non-AFP from the PISCES server and AFPs from Protein data bank. In this experiment-2, our proposed method attained high sensitivity of 79.16 which is 12.50 better than state-of-the-art the RAFP-pred method. Conclusion: AFPs have a common function with distinct structure. Therefore, the development of a single model for different sequences often fails to AFPs. A robust results have been shown by our proposed model on the diversity of training and testing dataset. The results of the proposed model outperformed compared to the previous AFPs prediction method such as RAFP-Pred. Our model consists of PCA for dimension reduction followed by gradient boosting for classification. Due to simplicity, scalability properties and high performance result our model can be easily extended for analyzing the proteomic and genomic dataset.


1998 ◽  
Vol 63 (2) ◽  
pp. 211-221 ◽  
Author(s):  
Miloš Tichý ◽  
Luděk Ridvan ◽  
Miloš Buděšínský ◽  
Jiří Závada ◽  
Jaroslav Podlaha ◽  
...  

The axially chiral bis(α-amino acid)s cis-2 and trans-2 as possible building blocks for polymeric structures of novel type of helicity were prepared. Their configuration has been determined by NMR spectroscopy and, in the case of the trans-isomer, confirmed by single-crystal X-ray diffraction. Analogous pair of stereoisomeric diacids cis-3 and trans-3, devoid of the amino groups, was also prepared and their configuration assigned. The observed differences in the NMR spectra of cis- and trans-isomers of 2 and 3 are discussed from the viewpoint of their different symmetry properties.


Function ◽  
2021 ◽  
Author(s):  
Bruce R Stevens ◽  
J Clive Ellory ◽  
Robert L Preston

Abstract The SARS-CoV-2 receptor, Angiotensin Converting Enzyme-2 (ACE2), is expressed at levels of greatest magnitude in the small intestine as compared to all other human tissues. Enterocyte ACE2 is co-expressed as the apical membrane trafficking partner obligatory for expression and activity of the B0AT1 sodium-dependent neutral amino acid transporter. These components are assembled as an [ACE2: B0AT1]2 dimer-of-heterodimers quaternary complex that putatively steers SARS-CoV-2 tropism in the gastrointestinal (GI) tract. GI clinical symptomology is reported in about half of COVID-19 patients, and can be accompanied by gut shedding of virion particles. We hypothesized that within this 4-mer structural complex, each [ACE2: B0AT1] heterodimer pair constitutes a physiological “functional unit.” This was confirmed experimentally by employing purified lyophilized enterocyte brush border membrane vesicles that were exposed to increasing doses of high-energy electron radiation from a 16 MeV linear accelerator. Based on established target theory, the results indicated the presence of Na+-dependent neutral amino acid influx transport activity functional unit with target size mw = 183.7 ± 16.8 kDa in situ in intact apical membranes. Each thermodynamically stabilized [ACE2: B0AT1] heterodimer functional unit manifests the transport activity within the whole ∼345 kDa [ACE2: B0AT1]2 dimer-of-heterodimers quaternary structural complex. The results are consistent with our prior molecular docking modeling and gut-lung axis approaches to understanding COVID-19. These findings advance the understanding of the physiology of B0AT1 interaction with ACE2 in the gut, and thereby potentially contribute to translational developments designed to treat or mitigate COVID-19 variant outbreaks and/or GI symptom persistence in long-haul Post-Acute Sequelae of SARS-CoV-2 (PASC).


Soft Matter ◽  
2021 ◽  
Author(s):  
Amber Hilderbrand ◽  
Phillip Taylor ◽  
Francesca Stanzione ◽  
Mark LaRue ◽  
Guo Chen ◽  
...  

Assembling peptides allow the creation of structurally complex materials, where amino acid selection influences resulting properties. We present a synergistic approach of experiments and simulations for examining the influence of...


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Joaquin Caro-Astorga ◽  
Kenneth T. Walker ◽  
Natalia Herrera ◽  
Koon-Yang Lee ◽  
Tom Ellis

AbstractEngineered living materials (ELMs) based on bacterial cellulose (BC) offer a promising avenue for cheap-to-produce materials that can be programmed with genetically encoded functionalities. Here we explore how ELMs can be fabricated in a modular fashion from millimetre-scale biofilm spheroids grown from shaking cultures of Komagataeibacter rhaeticus. Here we define a reproducible protocol to produce BC spheroids with the high yield bacterial cellulose producer K. rhaeticus and demonstrate for the first time their potential for their use as building blocks to grow ELMs in 3D shapes. Using genetically engineered K. rhaeticus, we produce functionalized BC spheroids and use these to make and grow patterned BC-based ELMs that signal within a material and can sense and report on chemical inputs. We also investigate the use of BC spheroids as a method to regenerate damaged BC materials and as a way to fuse together smaller material sections of cellulose and synthetic materials into a larger piece. This work improves our understanding of BC spheroid formation and showcases their great potential for fabricating, patterning and repairing ELMs based on the promising biomaterial of bacterial cellulose.


2006 ◽  
pp. 4847-4849 ◽  
Author(s):  
Bulusu Jagannadh ◽  
Marepally Srinivasa Reddy ◽  
Chennamaneni Lohitha Rao ◽  
Anabathula Prabhakar ◽  
Bharatam Jagadeesh ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (4) ◽  
pp. 1159
Author(s):  
Eskedar Tessema ◽  
Vijayanath Elakkat ◽  
Chiao-Fan Chiu ◽  
Jing-Hung Zheng ◽  
Ka Long Chan ◽  
...  

Phospha-Michael addition, which is the addition reaction of a phosphorus-based nucleophile to an acceptor-substituted unsaturated bond, certainly represents one of the most versatile and powerful tools for the formation of P-C bonds, since many different electrophiles and P nucleophiles can be combined with each other. This offers the possibility to access many diversely functionalized products. In this work, two kinds of basic pyridine-based organo-catalysts were used to efficiently catalyze phospha-Michael addition reactions, the 4-N,N-dimethylaminopyridinium saccharinate (DMAP·Hsac) salt and a fluorous long-chained pyridine (4-Rf-CH2OCH2-py, where Rf = C11F23). These catalysts have been synthesized and characterized by Lu’s group. The phospha-Michael addition of diisopropyl, dimethyl or triethyl phosphites to α, β-unsaturated malonates in the presence of those catalysts showed very good reactivity with high yield at 80–100 °C in 1–4.5 h with high catalytic recovery and reusability. With regard to significant catalytic recovery, sometimes more than eight cycles were observed for DMAP·Hsac adduct by using non-polar solvents (e.g., ether) to precipitate out the catalyst. In the case of the fluorous long-chained pyridine, the thermomorphic method was used to efficiently recover the catalyst for eight cycles in all the reactions. Thus, the easy separation of the catalysts from the products revealed the outstanding efficacy of our systems. To our knowledge, these are good examples of the application of recoverable organo-catalysts to the DMAP·Hsac adduct by using non-polar solvent and a fluorous long-chained pyridine under the thermomorphic mode in phospha-Michael addition reactions.


Sign in / Sign up

Export Citation Format

Share Document