Field comparisons of six pressure-difference bedload samplers in high-energy flow

1999 ◽  
2018 ◽  
Vol 19 (10) ◽  
pp. 2907 ◽  
Author(s):  
Miyako Kurihara-Shimomura ◽  
Tomonori Sasahira ◽  
Chie Nakashima ◽  
Hiroki Kuniyasu ◽  
Hiroyuki Shimomura ◽  
...  

Head and neck cancers, including oral squamous cell carcinoma (OSCC), are the sixth most common malignancies worldwide. OSCC frequently leads to oral dysfunction, which worsens a patient’s quality of life. Moreover, its prognosis remains poor. Unlike normal cells, tumor cells preferentially metabolize glucose by aerobic glycolysis. Pyruvate kinase (PK) catalyzes the final step in glycolysis, and the transition from PKM1 to PKM2 is observed in many cancer cells. However, little is known about PKM expression and function in OSCC. In this study, we investigated the expression of PKM in OSCC specimens and performed a functional analysis of human OSCC cells. We found that the PKM2/PKM1 ratio was higher in OSCC cells than in adjacent normal mucosal cells and in samples obtained from dysplasia patients. Furthermore, PKM2 expression was strongly correlated with OSCC tumor progression on immunohistochemistry. PKM2 expression was higher during cell growth, invasion, and apoptosis in HSC3 cells, which show a high energy flow and whose metabolism depends on aerobic glycolysis and oxidative phosphorylation. PKM2 expression was also associated with the production of reactive oxygen species (ROS) and integration of glutamine into lactate. Our results suggested that PKM2 has a variety of tumor progressive functions in OSCC cells.


1962 ◽  
Vol 202 (1) ◽  
pp. 77-79 ◽  
Author(s):  
Richard N. Lolley ◽  
Frederick E. Samson

Acid-soluble phosphates of rat brain during anoxia were determined by ion-exchange and chemical procedures. There is a general shift during anoxia of triphosphate nucleotides to monophosphates and a very rapid breakdown of phosphoryl-creatine. However, total phosphate leaving the high-energy phosphate pool is not equal to the changes in inorganic phosphate; inorganic phosphate change is much larger than high-energy phosphate change in early anoxia and much smaller in extended anoxia. The patterns of guanosine triphosphate and uridine triphosphate changes are more complex than adenosine triphosphate changes. Nicotinamideadenine dinucleotide levels are steady until late anoxia, at which time they decrease slightly. Cytidine monophosphate is the only cytidine nucleotide detected. Inosine nucleotide concentrations in control animals were below the limit of the method, but in late anoxia inosine monophosphate appeared. The data show that the energy flow through the phosphates in brain is rapid and involves phosphate compounds other than the acid-soluble nucleotides and phosphoryl-creatine.


2012 ◽  
Vol 326-328 ◽  
pp. 366-371 ◽  
Author(s):  
D. Zambrana ◽  
A. Aranda ◽  
G. Ferreira ◽  
F. Barrio

Manufacturing processes involve the input of high quality energy and/or dissipation of low quality energy to manipulate a material; similarly the input of high quality material usually leads to the generation of low quality materials. A useful output involves the operation of conventional processes including a wide variety of functions such as lubrication, air compression, cooling, heating, pumping, etc., which have, on the one hand, high energy and material consumption and, on the other hand, losses due to an inherent departure from reversible processes. This paper presents an energy-flow methodology to determine the ratio between the additional energy required per useful energy unit for the manufacturing processes. As an application of the method proposed in this work, an assembly and welding production line is shown as a case study. This process is a common technique used in the manufacturing industry and its energy consumption depends on several parameters e.g. heat and electrical input. As a result of this study, the energy consumption of the production line has been reduced by approximately 30% from the 645.94 Wh of total energy consumption, where the consumption of real useful energy is 4% of this total.


2021 ◽  
Vol 36 (2) ◽  
Author(s):  
Aswan Aswan ◽  
Yan Rizal

Identifying and constraining palaeotsunami deposits can be a vital tool for establishing the periodicity of earthquakes and their associated tsunami events beyond the historical records. However, the deposits can be difficult to establish and date. In this study we used the characteristics of the 2006 Pangandaran tsunami deposit as a reference for identification of paleotsunami deposits in Karapyak Beach, Pangandaran area, West Java, Indonesia. Similar to the 2006 Pangandaran tsunami deposit, the Karapyak Beach paleotsunami deposit is characterized by light brown loose sand materials overlying a dark brown paleosoil layer with erosional contact. A thin layer that varies in thickness is locally found right above the erosional contact, with non-laminated coarser grain in the lower part that gradually change into medium to fine sand-sized in upper part. The base of the lower part is rich with broken mollusc shells and corals, and the mid-top of the lower part may contain several intact molusc shells and corals, rock fragments and anthropogenic products (rooftile). Those types of fragments are absent in the upper part of the thin layer. Grain size analysis shows a mixture of fine and coarse grains in the lower part of 2006 tsunami deposits as well as in the suspected paleotsunami deposits, suggesting uprush high energy flow during sedimentation. Fining upward sequence above mixed grain layers reflects waning flow or pre-backwash deposition. Foraminifera analysis also shows a mixture of shallow and deep marine foraminifera in the two deposits. Based on the characteristics of the 2006 tsunami deposits, there are at least four identified paleotsunami deposits at Karapyak Beach, Pangandaran area.


2003 ◽  
Vol 18 (23) ◽  
pp. 4159-4168 ◽  
Author(s):  
Carola F. Berger ◽  
Tibor Kúcs ◽  
George Sterman

We identify a class of perturbatively computable measures of interjet energy flow, which can be associated with well-defined color flow at short distances. As an illustration, we calculate correlations between event shapes and the flow of energy, QΩ, into an interjet angular region, Ω, in high-energy two-jet e+e--annihilation events. Laplace transforms with respect to the event shapes suppress states with radiation at intermediate energy scales, so that we may compute systematically logarithms of interjet energy flow. This method provides a set of predictions on energy radiated between jets, as a function of event shape and of the choice of the region Ω in which the energy is measured. Non-global logarithms appear as corrections. We apply our method to a continuous class of event shapes.


Sign in / Sign up

Export Citation Format

Share Document