scholarly journals Facile preparation and photocatalytic performance of anatase TiO2/nanocellulose composite

2021 ◽  
Author(s):  
Guoqing Liu ◽  
Xiangjun Pan ◽  
Jing Li ◽  
Cheng Li ◽  
Chenlu Ji

Anatase TiO2/nanocellulose composite was prepared for the first time via a one-step method at a relatively low temperature by using cellulose nanofibers as carrier and tetrabutyl titanate as titanium precursor. The morphology, structure and element composition of the composite were characterized by SEM, EDS, TEM, XRD and XPS. The specific surface area and thermal stability of the composite were investigated by N2 adsorption-desorption and thermogravimetric analysis, respectively. In addition, the prepared composite was used for the photocatalytic degradation of methyl orange (aqueous solution, 40 mg·L-1). It was found that the composite had a good morphology and anatase crystal structure, and Ti-O-C bond was formed between TiO2 and nanocellulose. The specific surface area of composite was increased and the thermal stability was decreased compared with the cellulose nanofiber. Moreover, the degradation rate of methyl orange was achieved as 99.72% within 30 min, and no obvious activity loss was observed after five cycles. This work might give some insights into the design of efficient photocatalysts for the treatment of organic dye wastewater.

2012 ◽  
Vol 463-464 ◽  
pp. 543-547 ◽  
Author(s):  
Cheng Feng Li ◽  
Xiao Lu Ge ◽  
Shu Guang Liu ◽  
Fei Yu Liu

Core-shell structured hydroxyapatite (HA)/meso-silica was prepared and used as absorbance of methylene blue (MB). HA/meso-silica was synthesized in three steps: preparation of nano-sized HA by wet precipitation method, coating of dense silica and deposition of meso-silica shell on HA. As-received samples were characterized by Fourier transformed infare spectra, small angle X-ray diffraction, nitrogen adsorption-desorption isotherm and transmission electron microscopy. A wormhole framework mesostructure was found for HA/meso-silica. The specific surface area and pore volume were 128 m2•g-1 and 0.36 cm3•g-1, respectively. From the adsorption isotherm, HA/meso-silica with the great specific surface area exhibited a prominent adsorption capacity of MB (134.0 mg/g) in comparison with bare HA (0 mg/g). This study might shed light on surface modification of conventional low-cost adsorbents for removal of organic pollutants from aqueous solutions.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Asif Hussain ◽  
Jiebing Li ◽  
Jun Wang ◽  
Fei Xue ◽  
Yundan Chen ◽  
...  

Herein we demonstrate first report on fabrication, characterization, and adsorptive appraisal of graphene/cellulose nanofibers (GO/CNFs) monolith for methylene blue (MB) dye. Series of hybrid monolith (GO/CNFs) were assembled via urea assisted self-assembly method. Hybrid materials were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction patterns, Raman spectroscopy, elemental analysis, thermogravimetric curve analysis, specific surface area, surface charge density measurement, and compressional mechanical analysis. It was proposed that strong chemical interaction (mainly hydrogen bonding) was responsible for the formation of hybrid assembly. GO/CNFs monolith showed mechanically robust architecture with tunable pore structure and surface properties. GO/CNFs adsorbent could completely remove trace to moderate concentrations of MB dye and follow pseudo-second-order kinetics model. Adsorption isotherm behaviors were found in the following order: Langmuir isotherm > Freundlich isotherm > Temkin isotherm model. Maximum adsorption capacity of 227.27 mg g−1 was achieved which is much higher than reported graphene based monoliths and magnetic adsorbent. Incorporation of nanocellulose follows exponential relationship with dye uptake capacities. High surface charge density and specific surface area were main dye adsorptive mechanism. Regeneration and recycling efficiency was achieved up to four consecutive cycles with cost-effective recollection and zero recontamination of treated water.


2020 ◽  
Vol 860 ◽  
pp. 173-177
Author(s):  
Otong Nurhilal ◽  
Renaldy Sharin Lesmana ◽  
Karina Ramadayanti ◽  
Sholihatul Habibah ◽  
Sahrul Hidayat ◽  
...  

Water Hyacinth (WH) is a plant that can absorb various pollutants in water. However, this plant is categorized as an invasive plant that can become a weed in the waters. To improve the functionality of WH, processing of WH is needed to be used for various applications. One of modifications of WH is as porous carbon for battery cathode composite. In this paper, we reported a synthesis of a porous carbon from WH. WH is processed into carbon by carbonization at various temperatures of 400, 500 and 600 °C with various activators of KOH, H3PO4 and ZnCl2 to obtain high quality porous carbon which has high electrical conductivity, large specific surface area and large porous volume. All synthesized carbons were characterized by proximate analysis measurements, scanning electron microscopy (SEM), and N2 adsorption-desorption measurements. The highest carbon fixed content of 37.79% is obtained from charcoal with a carbonization temperature of 400 °C. The largest specific surface area of 264.77 m2/g was obtained from activated carbon with H3PO4 as activator. The values of pore volume and pore radius were 0.186 cm3/g and 1.56 nm, respectively.


2014 ◽  
Vol 931-932 ◽  
pp. 421-425 ◽  
Author(s):  
Son Tung Pham ◽  
William Prince

The objective of this work was to examine the microstructural changes caused by the carbonation of normal mortar. Samples were prepared and subjected to accelerated carbonation at 20°C, 65% relative humidity and 20% CO2concentration. The evolutions of the pore size distribution and the specific surface area during carbonation were calculated from the adsorption - desorption isotherms of water vapour and nitrogen. Conflicts observed in the results showed that the porous domains explored by these two methods are not the same due to the difference in molecular sizes of nitrogen and water. These two techniques therefore help to complementarily evaluate the effects of carbonation. The study also helped to explain why results in the literature diverge greatly on the influence of carbonation on specific surface area.


2010 ◽  
Vol 1256 ◽  
Author(s):  
Girija Shankar Chaubey ◽  
Yuan Yao ◽  
Julien Pierre Amelie Makongo Mangan ◽  
Pranati Sahoo ◽  
Pierre F. P. Poudeu ◽  
...  

AbstractA simple method is reported for the synthesis of monodispersed HfO2 nanoparticles by the ammonia catalyzed hydrolysis and condensation of hafnium (IV) tert-butoxide in the presence of surfactants at room temperature. Transmission electron microscopy shows faceted nanoparticles with an average diameter of 3-4 nm. As-synthesized nanoparticles are amorphous in nature and crystallize upon moderate heat treatment. The HfO2 nanoparticles have a narrow size distribution, large specific surface area and good thermal stability. Specific surface area was about 239 m2/g on as-prepared nanoparticle samples while those annealed at 500 °C have specific surface area of 221 m2/g indicating that there was no significant increase in particle size. This result was further confirmed by TEM images of nanoparticles annealed at 300 °C and 500 °C. X-ray diffraction studies of the crystallized nanoparticles revealed that HfO2 nanoparticles were monoclinic in structure. The synthetic procedure used in this work can be readily modified for large scale production of monodispersed HfO2 nanoparticles.


Author(s):  
Nahid Haghnazari ◽  
Mozaffar Abdollahifar ◽  
Farahnaz Jahani

Mesoporous AlOOH was synthesized by hydrothermal treatment from aluminium nitrate and NaOH or KOH. The effect of NaOH and KOH as precipitating agents on the characterization of samples were investigated. xrd, ftir, fesem and N<sub>2</sub> adsorption-desorption analytical techniques were used to characterize the products. Our results showed that using KOH as precipitating agent was favourable for the formation of mesoporous and crystalline AlOOH with high bet-specific surface area of 98 m<sup>2</sup>/g.


2004 ◽  
Vol 20 (03) ◽  
pp. 251-255
Author(s):  
Zeng Li ◽  
◽  
Wang Chun-Ming ◽  
Wei Ji-Ying ◽  
Zhu Yue-Xiang ◽  
...  

2017 ◽  
Vol 14 (1) ◽  
pp. 17-25
Author(s):  
Wenjie Zhang ◽  
Jiao Yang ◽  
Ling Du

Background: Pyrochloro structured Sm2Ti2O7 has photocatalytic activity on degradation of organic substances and on hydrogen evolution from water. Powder materials usually encounter the obstacle of separating from treated water. HZSM-5 zeolite is a kind of porous structured material with large surface area. Its role as a support for Sm2Ti2O7 is interesting. Methods: The supported Sm2Ti2O7 was synthesized using sol-gel method. The composite χSm2Ti2O7/HZSM-5 was characterized by XRD, SEM, TEM, FT-IR/FIR, UV-Vis DRS, N2 adsorption- desorption and XPS measurements. Photocatalytic degradation of Reactive Brilliant Red X-3B (RBR X-3B) was measured to evaluate the activity of the composite. Results: Sm2Ti2O7 is in the pyrochlore phase after loading on the surface of HZSM-5 zeolite. The crystal cell of pyrochlore Sm2Ti2O7 continuously expanses with decreasing Sm2Ti2O7 loading content in the composite. Bandgap energy of Sm2Ti2O7 is enlarged after supporting. The specific surface area of Sm2Ti2O7 was enlarged from 9.8 m2/g to 93 m2/g after loading. Both of the adsorption capacity and photocatalytic activity of the χSm2Ti2O7/HZSM-5 are greater than those of pure Sm2Ti2O7. After 120 min of irradiation, 73.1% of the initial RBR X-3B molecules are decomposed on 70%Sm2Ti2O7/HZSM-5, and only 27.7% of the dye is decomposed on the bare Sm2Ti2O7. Conclusion: Sm2Ti2O7 crystal growth is constrained after loading due to dispersion of Sm2Ti2O7 on the surface of HZSM-5. The specific surface area of Sm2Ti2O7 is significantly enlarged after loading. All the supported samples have greatly enhanced photocatalytic activity as compared to the bare Sm2Ti2O7.


Sign in / Sign up

Export Citation Format

Share Document