scholarly journals Enhanced Fuel Efficiency by Frictional Drag Reduction of Toy Boat Coated with Superhydrophobic Additives comprising Nickel Stearate and AlNiCo Nanoparticles

2021 ◽  
Author(s):  
Kadarkaraithangam Jeyasubramanian ◽  
Silambu Selvan Paranibramma Nayagi ◽  
Gnanadhas Sobhin Osannal Hikku

Surface frictional drag developed by marine vessels utilizes a considerable percentage of fuel for propulsion. Superhydrophobic (SH) surface normally traps a layer of air at the interface and significantly reduces the surface frictional drag. Herein, the efficacy of the SH coating towards the surface drag reduction of the sailing boat is recognized by conducting a facile experiment where the bottom of the toy boat is coated with SH additives. AlNiCo nanoparticles and nickel stearate prepared by ball-milling and co-precipitation methods respectively are drop-casted layer by layer over the surface of the toy boat to impart SH. The fuel efficiency of the SH boat is improved by 51.49% substantiating the reduction in surface drag of the vessel. Further, the trapped air provides extra buoyancy force, enhancing the load-bearing capability of the SH boat by 5.77%.

Author(s):  
Neal A. Brown ◽  
Martin Wosnik

Controlled emission of microbubbles into a water flow boundary layer appears to be a promising means to significant reduction of frictional drag on ships. Theoretical analyses and hypotheses require that particularly small (∼ 100 micrometers or less) gas bubbles be emitted and retained in particular laminae close to the wetted surface. Drag reduction economy requires that the quantity of gas emitted be very small. Here a design of a controllable microbubble emitter which meets both demands above is put forth. The two key requirements governing the design are pulsed operation, which expels a known volume of air during each cycle, and a known number of uniformly-sized micro-holes, which determines bubble number and therefore bubble diameter. A first, proof-of-concept experiment with a modified pulsed-pressure design of the proposed microbubble emitter was carried out and shows promise.


2015 ◽  
Vol 2 (1) ◽  
pp. 140163
Author(s):  
Colin Palmer ◽  
Mark T. Young

Living in water imposes severe constraints on the evolution of the vertebrate body. As a result of these constraints, numerous extant and extinct aquatic vertebrate groups evolved convergent osteological and soft-tissue adaptations. However, one important suite of adaptations is still poorly understood: dermal cover morphologies and how they influence surface fluid dynamics. This is especially true for fossil aquatic vertebrates where the soft tissue of the dermis is rarely preserved. Recent studies have suggested that the keeled scales of mosasaurids (pelagic lizards that lived during the Late Cretaceous) aided in surface frictional drag reduction in a manner analogous to the riblets on shark placoid scales. However, here we demonstrate that mosasaurid scales were over an order of magnitude too large to have this effect. More likely they increased the frictional drag of the body and may have played a role in controlling flow separation by acting as surface roughness that turbulated the boundary layer. Such a role could have reduced pressure drag and enhanced manoeuvrability. We caution those studying fossil aquatic vertebrates from positing the presence of surface drag reducing morphologies, because as we show herein, to be effective such features need to have a spacing of approximately 0.1 mm or less.


2020 ◽  
Vol 9 (4) ◽  
pp. 336-345
Author(s):  
Silpi Hazarika ◽  
Sahin Ahmed

The impact of heat transfer in micropolar fluid may be developed due to its various promising applications in engineering, bio-medical sciences, geo-thermal progression, spherical storage tanks, nuclear power plants, automobile sectors etc. Motivated by such significance, the current study is to expound the influences of micropolar Casson fluid flow over a solid sphere with Brownian motion, thermophoretic force and buoyancy force surrounded by porous medium. The adopted model having complex PDE’s are reduced to dimensionless ODE’s by utilizing proper similarity solutions. A numerical approach have been carried out for velocity, micro rotation, temperature and concentration, the solutions are procured by Matlab Bvp4c code and plotted graphs for diverse involved parameters. An adequate result is acquired by an assessment with earlier available work. The effects of key parameters on surface drag coefficient, surface thermal flux and particles concentration flux are examined and displayed in tabular form. Grash of number raises the profiles of thermal flux and concentration flux where the buoyancy force is more dominant. Further, the obtained results indicate that the angular velocity is elevated near the surface of the sphere, and they behaves asymptotically far away from the surface due to the effect of micropolar parameter. Moreover, temperature and molar species concentration are enriched with upper values of micropolar factor. It is perceived that, augmented values of Casson parameter amplifies the velocity outline.


2013 ◽  
Vol 461 ◽  
pp. 201-205 ◽  
Author(s):  
Hua Wei Chen ◽  
Fu Gang Rao ◽  
De Yuan Zhang ◽  
Xiao Peng Shang

Flying bird has gradually formed airworthy structures e.g. streamlined shape and hollow shaft of feather to improve flying performance by millions of years natural selection. As typical property of flight feather, herringbone-type riblets can be observed along the shaft of each feather, which caused by perfect alignment of barbs. Why bird feather have such herringbone-type riblets has not been extensively discussed until now. In this paper, microstructures of secondary feathers are investigated through SEM photo of various birds involving adult pigeons, wild goose and magpie. Their structural parameters of herringbone riblets of secondary flight feather are statistically obtained. Based on quantitative analysis of feathers structure, one novel biomimetic herringbone riblets with narrow smooth edge are proposed to reduce surface drag. In comparison with traditional microgroove riblets and other drag reduction structures, the drag reduction rate of the proposed biomimetic herringbone riblets is experimentally clarified up to 15%, much higher than others. Moreover, the drag reduction mechanism of herringbone riblets are also confirmed and exploited by CFD.


2020 ◽  
Vol 64 (02) ◽  
pp. 118-126
Author(s):  
Bradley C. Peifer ◽  
Christopher Callahan-Dudley ◽  
Simo A. Makiharju

We examined the feasibility of combining a superhydrophobic surface (SHS) and air layer drag reduction (ALDR) to achieve the frictional drag reduction (DR) shown achievable with traditional ALDR, but at a reduced gas flux to increase the achievable net energy savings. The effect of a commercial SHS coating on the gas flux required to maintain a stable air layer (AL) for DR was investigated and compared with that of a painted non-SHS at Reynolds numbers up to 5.1 X 106. Quantitative electrical impedance measurements and more qualitative image analysis were used to characterize surface coverage and to determine whether a stable AL was formed and maintained over the length of the model. Analysis of video and still images for both the SHS and painted surface gives clear indications that the SHS is able to maintain AL consistency at significantly lower gas flux than required on the non-SHS painted surface. Hydrophobicity of the surfaces was characterized through droplet contact angle measurements, and roughness of all the flow surfaces was measured. The results from these preliminary experiments seem to indicate that for conditions explored (up to Rex = 5.1 X 106), there is a significant decrease in the amount of gas required to establish a uniform AL (and hence presumably achieve ALDR) on the SHS when compared with a hydraulically smooth painted non-SHS.


2018 ◽  
Vol Vol 160 (A2) ◽  
Author(s):  
S Sindagi ◽  
R Vijayakumar ◽  
B K Saxena

The reduction of ship’s resistance is one of the most effective way to reduce emissions, operating costs and to improve EEDI. It is reported that, for slow moving vessels, the frictional drag accounts for as much as 80% of the total drag, thus there is a strong demand for the reduction in the frictional drag. The use of air as a lubricant, known as Micro Bubble Drag Reduction, to reduce that frictional drag is an active research topic. The main focus of authors is to present the current scenario of research carried out worldwide along with numerical simulation of air injection in a rectangular channel. Latest developments in this field suggests that, there is a potential reduction of 80% & 30% reduction in frictional drag in case of flat plates and ships respectively. Review suggests that, MBDR depends on Gas or Air Diffusion which depends on, Bubble size distributions and coalescence and surface tension of liquid, which in turn depends on salinity of water, void fraction, location of injection points, depth of water in which bubbles are injected. Authors are of opinion that, Microbubbles affect the performance of Propeller, which in turn decides net savings in power considering power required to inject Microbubbles. Moreover, 3D numerical investigations into frictional drag reduction by microbubbles were carried out in Star CCM+ on a channel for different flow velocities, different void fraction and for different cross sections of flow at the injection point. This study is the first of its kind in which, variation of coefficient of friction both in longitudinal as well as spanwise direction were studied along with actual localised variation of void fraction at these points. From the study, it is concluded that, since it is a channel flow and as the flow is restricted in confined region, effect of air injection is limited to smaller area in spanwise direction as bubbles were not escaping in spanwise direction.


Meccanica ◽  
2020 ◽  
Vol 55 (10) ◽  
pp. 1917-1947
Author(s):  
J. E. Guerrero ◽  
M. Sanguineti ◽  
K. Wittkowski

Abstract Traditional winglets are designed as fixed devices attached at the tips of the wings. The primary purpose of the winglets is to reduce the lift-induced drag, therefore improving aircraft performance and fuel efficiency. However, because winglets are fixed surfaces, they cannot be used to control lift-induced drag reductions or to obtain the largest lift-induced drag reductions at different flight conditions (take-off, climb, cruise, loitering, descent, approach, landing, and so on). In this work, we propose the use of variable cant angle winglets which could potentially allow aircraft to get the best all-around performance (in terms of lift-induced drag reduction), at different flight phases. By using computational fluid dynamics, we study the influence of the winglet cant angle and sweep angle on the performance of a benchmark wing at Mach numbers of 0.3 and 0.8395. The results obtained demonstrate that by adjusting the cant angle, the aerodynamic performance can be improved at different flight conditions.


Author(s):  
B. B. Arora ◽  
Ujjwal Suri ◽  
Utkarsh Garg ◽  
Shraman Das ◽  
Sushrut Kumar

Abstract Vehicle aerodynamics is a prime domain of research and development. Multiple active and passive aerodynamic systems have been applied for its enhancement. The reduction of drag plays a pivotal role in the improvement of vehicle aerodynamic performance. The present paper studies the innovative design of a road vehicle for a fuel efficiency challenge, implemented for optimal drag reduction. Vortex generators are utilized as a passive aerodynamic feature for further minimization of the wake region size and reduction of pressure drag. High fidelity computational fluid dynamics simulations were applied for the evaluation of this design. Data was collated from simulations for both the cases, with and without the usage of vortex generators and compared objectively. The results of the study establish that the vehicle design has an exceptionally low drag coefficient. It also exhibits a strong reduction in drag when the vortex generators are fitted. These results reveal that the design can be deployed for production as a worthy competition vehicle.


Sign in / Sign up

Export Citation Format

Share Document