scholarly journals Local strain and tunneling current modulated excitonic luminescence in MoS2 monolayers

2021 ◽  
Author(s):  
Yalan Ma ◽  
Romana Alice Kalt ◽  
Andreas Stemmer

The excitonic luminescence of monolayer molybdenum disulfide (MoS2) on a gold substrate is studied by scanning tunneling microscopy (STM). STM-induced light emission (STM-LE) from MoS2 is assigned to the radiative decay of A and B excitons. The intensity ratio of A and B exciton emission can be modulated by the tunneling current, since the A exciton emission intensity saturates at high tunneling currents. Moreover, the corrugated gold substrate introduces local strain to the monolayer MoS2, resulting in significant changes of electronic bandgap and valence band splitting. The modulation rates of strain on A and B exciton energies are estimated as -72 meV/% and -57 meV/%, respectively. STM-LE provides a direct link between exciton energy and local strain in monolayer MoS2 with a spatial resolution <10 nm. 

Author(s):  
W. Lo ◽  
J.C.H. Spence ◽  
M. Kuwabara

Work on the integration of STM with REM has demonstrated the usefulness of this combination. The STM has been designed to replace the side entry holder of a commercial Philips 400T TEM. It allows simultaneous REM imaging of the tip/sample region of the STM (see fig. 1). The REM technique offers nigh sensitivity to strain (<10−4) through diffraction contrast and high resolution (<lnm) along the unforeshortened direction. It is an ideal technique to use for studying tip/surface interactions in STM.The elastic strain associated with tunnelling was first imaged on cleaved, highly doped (S doped, 5 × 1018cm-3) InP(110). The tip and surface damage observed provided strong evidence that the strain was caused by tip/surface contact, most likely through an insulating adsorbate layer. This is consistent with the picture that tunnelling in air, liquid or ordinary vacuum (such as in a TEM) occurs through a layer of contamination. The tip, under servo control, must compress the insulating contamination layer in order to get close enough to the sample to tunnel. The contaminant thereby transmits the stress to the sample. Elastic strain while tunnelling from graphite has been detected by others, but never directly imaged before. Recent results using the STM/REM combination has yielded the first direct evidence of strain while tunnelling from graphite. Figure 2 shows a graphite surface elastically strained by the STM tip while tunnelling (It=3nA, Vtip=−20mV). Video images of other graphite surfaces show a reversible strain feature following the tip as it is scanned. The elastic strain field is sometimes seen to extend hundreds of nanometers from the tip. Also commonly observed while tunnelling from graphite is an increase in the RHEED intensity of the scanned region (see fig.3). Debris is seen on the tip and along the left edges of the brightened scan region of figure 4, suggesting that tip abrasion of the surface has occurred. High resolution TEM images of other tips show what appear to be attached graphite flakes. The removal of contamination, possibly along with the top few layers of graphite, seems a likely explanation for the observed increase in RHEED reflectivity. These results are not inconsistent with the “sliding planes” model of tunnelling on graphite“. Here, it was proposed that the force due to the tunnelling probe acts over a large area, causing shear of the graphite planes when the tip is scanned. The tunneling current is then modulated as the planes of graphite slide in and out of registry. The possiblity of true vacuum tunnelling from the cleaned graphite surface has not been ruled out. STM work function measurements are needed to test this.


2002 ◽  
Vol 66 (4) ◽  
Author(s):  
A. Carladous ◽  
R. Coratger ◽  
F. Ajustron ◽  
G. Seine ◽  
R. Péchou ◽  
...  

Nanomaterials ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 827
Author(s):  
Marie Hervé ◽  
Moritz Peter ◽  
Timofey Balashov ◽  
Wulf Wulfhekel

We used a homodyne detection to investigate the gyration of magnetic vortex cores in Fe islands on W(110) with spin-polarized scanning tunneling microscopy at liquid helium temperatures. The technique aims at local detection of the spin precession as a function of frequency using a radio-frequency (rf) modulation of the tunneling bias voltage. The gyration was excited by the resulting spin-polarized rf current in the tunneling junction. A theoretical analysis of different contributions to the frequency-dependent signals expected in this technique is given. These include, besides the ferromagnetic resonance signal, also signals caused by the non-linearity of the I ( U ) characteristics. The vortex gyration was modeled with micromagnetic finite element methods using realistic parameters for the tunneling current, its spin polarization, and the island shape, and simulations were compared with the experimental results. The observed signals are presented and critically analyzed.


2004 ◽  
Vol 566-568 ◽  
pp. 1211-1216
Author(s):  
Torsten Doege ◽  
Christian Hagendorf ◽  
Henning Neddermeyer

1993 ◽  
Vol 07 (01n03) ◽  
pp. 516-519 ◽  
Author(s):  
RICHARD BERNDT ◽  
JAMES K. GIMZEWSKI

Light emission from noble metal surfaces excited by a scanning tunneling microscope has been interpreted as arising from in elastic tunneling excitation of tip-induced plasmon modes. We have extended this work to study the adsorption of oxygen on Ti and have observed the formation of structures with subnanometer lateral dimensions which give rise to clear contrasts in STM topographs and photon intensity maps. The experimental results strongly indicate that these contrasts are due to oxygen-induced variations of the local density of states.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Lu Cao ◽  
Wenyao Liu ◽  
Geng Li ◽  
Guangyang Dai ◽  
Qi Zheng ◽  
...  

AbstractFor iron-based superconductors, the phase diagrams under pressure or strain exhibit emergent phenomena between unconventional superconductivity and other electronic orders, varying in different systems. As a stoichiometric superconductor, LiFeAs has no structure phase transitions or entangled electronic states, which manifests an ideal platform to explore the pressure or strain effect on unconventional superconductivity. Here, we observe two types of superconducting states controlled by orientations of local wrinkles on the surface of LiFeAs. Using scanning tunneling microscopy/spectroscopy, we find type-I wrinkles enlarge the superconducting gaps and enhance the transition temperature, whereas type-II wrinkles significantly suppress the superconducting gaps. The vortices on wrinkles show a C2 symmetry, indicating the strain effects on the wrinkles. By statistics, we find that the two types of wrinkles are categorized by their orientations. Our results demonstrate that the local strain effect with different directions can tune the superconducting order parameter of LiFeAs very differently, suggesting that the band shifting induced by directional pressure may play an important role in iron-based superconductivity.


2002 ◽  
Vol 719 ◽  
Author(s):  
Koji Maeda ◽  
Akira Hida ◽  
Yutaka Mera

AbstractCoupling of scanning tunneling microscopy (STM) with various schemes of optical spectroscopy was found to provide powerful tools for study of crystalline defects in bulk semiconducting solids. The simplest method was applied to a subsurface defect in a bulk GaAs crystal in which the signal was acquired by detecting the change in the tunneling current reflecting a local surface swelling that occurs when the wavelength of the chopped light used for spectroscopic measurements coincides with a photoabsorption spectral peak of the defect. Another scheme using a continuous light of variable wavelength was applied to midgap centers, assigned as arsenic antisite defects, densely populated in low-temperature-grown GaAs epifilms. Experiments at 90K revealed that light illumination causes reversible transformation of the individual defects to a metastable state with an excitation spectrum very close to one observed for the photo-quenching effect of EL2 centers in bulk GaAs.


Sign in / Sign up

Export Citation Format

Share Document