Microstructure and Wear Resistance of AZ31B Magnesium Alloy by Laser Cladding with Al-Si/Al2O3-TiO2Powders

2011 ◽  
Vol 38 (6) ◽  
pp. 0603020
Author(s):  
崔泽琴 Cui Zeqin ◽  
王文先 Wang Wenxian ◽  
吴宏亮 Wu Hongliang ◽  
许并社 Xu Bingshe
Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 638 ◽  
Author(s):  
Osama Asghar ◽  
Lou Li-Yan ◽  
Muhammad Yasir ◽  
Li Chang-Jiu ◽  
Li Cheng-Xin

Laser modification techniques have been widely adopted in the field of surface engineering. Among these modified techniques, ultra-high-speed laser cladding is trending most nowadays to fabricate wear-resistant surfaces. The main purpose of this research is to provide a detailed insight of ultra-high-speed laser cladding of hard Ni60 alloy on LA43M magnesium alloy to enhance its surface mechanical properties. Multiple processing parameters were investigated to obtain the optimal result. The synthesized coating was studied microstructurally by field emission scanning electron microscopy (FESEM) equipped with an energy dispersive spectrometer (EDS) and X-ray diffraction (XRD). The microhardness and wear resistance of the Ni60 coating were analyzed under Vickers hardness and pin on disc tribometer respectively. The obtained results show that the dense Ni60 coating was fabricated with a thickness of 300 μm. No cracks and porosities were detected in cross-sectional morphology. The Ni60 coating was mainly composed of γ-Ni and hard phases (chromium carbides and borides). The average microhardness of coating was recorded as 948 HV0.3, which is approximately eight times higher than that of the substrate. Meanwhile, the Ni60 coating exhibited better wear resistance than the substrate, which was validated upon the wear loss and wear mechanism. The wear loss recorded for the substrate was 6.5 times higher than that of the coating. The main wear mechanism in the Ni60 coating was adhesive while the substrate showed abrasive characteristics.


Entropy ◽  
2018 ◽  
Vol 20 (12) ◽  
pp. 915 ◽  
Author(s):  
Kaijin Huang ◽  
Lin Chen ◽  
Xin Lin ◽  
Haisong Huang ◽  
Shihao Tang ◽  
...  

In order to improve the wear and corrosion resistance of an AZ91D magnesium alloy substrate, an Al0.5CoCrCuFeNi high-entropy alloy coating was successfully prepared on an AZ91D magnesium alloy surface by laser cladding using mixed elemental powders. Optical microscopy (OM), scanning electron microscopy (SEM), and X-ray diffraction were used to characterize the microstructure of the coating. The wear resistance and corrosion resistance of the coating were evaluated by dry sliding wear and potentiodynamic polarization curve test methods, respectively. The results show that the coating was composed of a simple FCC solid solution phase with a microhardness about 3.7 times higher than that of the AZ91D matrix and even higher than that of the same high-entropy alloy prepared by an arc melting method. The coating had better wear resistance than the AZ91D matrix, and the wear rate was about 2.5 times lower than that of the AZ91D matrix. Moreover, the main wear mechanisms of the coating and the AZ91D matrix were different. The former was abrasive wear and the latter was adhesive wear. The corrosion resistance of the coating was also better than that of the AZ91D matrix because the corrosion potential of the former was more positive and the corrosion current was smaller.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 639
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodriguez ◽  
Joaquín Rams

Aluminum matrix composites reinforced with SiC particles (SiCp) were deposited on ZE41 magnesium substrates by laser cladding in order to improve their tribological performance. Silicon and titanium were added to the matrix in order to avoid Al-SiC reactivity. The addition of these elements to avoid Al4C3 formation during the laser cladding fabrication was successfully explored in previous research, but the effect of these elements on the wear behavior and the corrosion resistance of these coatings has not been studied. During the fabrication process, there is dilution with the substrate that forms an Al-Mg matrix, which has an influence on the wear and corrosion behavior. Electrochemical polarization and impedance measurements in a 3.5% NaCl solution and the dry sliding conditions on a pin-on-disc tribometer were used to evaluate the different compositions of Al/SiCp coatings on the ZE41 magnesium alloy and uncoated ZE41. All of the composite coatings had lower wear rates than the substrate. However, the coatings showed worse corrosion behavior than the ZE41 substrate, although the addition of Si or Ti improves the corrosion behavior and the wear resistance.


Applied laser ◽  
2012 ◽  
Vol 32 (6) ◽  
pp. 474-478
Author(s):  
葛亚琼 Ge Yaqiong ◽  
郭谡 Guo Su ◽  
王鑫 Wang Xin ◽  
王文先 Wang Wenxian ◽  
李想 Li Xiang

Applied laser ◽  
2015 ◽  
Vol 35 (2) ◽  
pp. 145-149
Author(s):  
葛亚琼 Ge Yaqiong ◽  
王文先 Wang Wenxian ◽  
崔泽琴 Cui Zeqin ◽  
王鑫 Wang Xin

2009 ◽  
Vol 66 ◽  
pp. 206-209
Author(s):  
Kai Jin Huang ◽  
Cun Shan Wang ◽  
Chang Sheng Xie

To improve the wear property of magnesium alloy, wear-resistant TiC and in-situ ZrC co-reinforced Zr-based amorphous composite coating has been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders of Zr52.5Cu17.9Ni14.6Al10Ti5-TiC. The microstructure of the coating was characterized by XRD and SEM techniques. The wear resistance of the coating was evaluated under dry sliding wear test condition. The results show that the coating mainly consists of amorphous and different crystalline phases. The coating exhibits excellent wear resistance due to the recombination action of amorphous and crystalline phases, and the wear resistance improves further with the increase of TiC content. The main wear mechanism of the coating and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear.


2012 ◽  
Vol 27 (6) ◽  
pp. 1042-1047 ◽  
Author(s):  
Zeqin Cui ◽  
Hongwei Yang ◽  
Wenxian Wang ◽  
Hongliang Wu ◽  
Bingshe Xu

2010 ◽  
Vol 160-162 ◽  
pp. 450-455
Author(s):  
Kai Jin Huang ◽  
Chao Dong Tan ◽  
Chang Rong Zhou

To improve the wear property of magnesium alloys, Zr-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Zr55Al10Ni5Cu30/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings exhibit excellent wear resistance due to the recombination action of amorphous and different crystalline phases. The main wear mechanism of the coatings and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear.


Sign in / Sign up

Export Citation Format

Share Document