scholarly journals Evaluation of the Wear Resistance and Corrosion Behavior of Laser Cladding Al/SiC Metal Matrix Composite Coatings on ZE41 Magnesium Alloy

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 639
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodriguez ◽  
Joaquín Rams

Aluminum matrix composites reinforced with SiC particles (SiCp) were deposited on ZE41 magnesium substrates by laser cladding in order to improve their tribological performance. Silicon and titanium were added to the matrix in order to avoid Al-SiC reactivity. The addition of these elements to avoid Al4C3 formation during the laser cladding fabrication was successfully explored in previous research, but the effect of these elements on the wear behavior and the corrosion resistance of these coatings has not been studied. During the fabrication process, there is dilution with the substrate that forms an Al-Mg matrix, which has an influence on the wear and corrosion behavior. Electrochemical polarization and impedance measurements in a 3.5% NaCl solution and the dry sliding conditions on a pin-on-disc tribometer were used to evaluate the different compositions of Al/SiCp coatings on the ZE41 magnesium alloy and uncoated ZE41. All of the composite coatings had lower wear rates than the substrate. However, the coatings showed worse corrosion behavior than the ZE41 substrate, although the addition of Si or Ti improves the corrosion behavior and the wear resistance.

Coatings ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 41
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodriguez ◽  
Joaquin Rams

Ceramic-reinforced metal matrix composites are known for their high wear resistance. A coating based on these materials would be helpful to improve the wear behavior of aluminum alloys. Laser cladding has been used to deposit a coating consisting of an aluminum alloy reinforced with SiC particles on an AA6082 aluminum alloy. Laser cladding is a very energetic technique that causes the SiC particles to react with the molten aluminum to form Al4C3, which degrades the particles and reduces the properties of the coating. The formation of this detrimental compound was successfully achieved with the addition of Silicon and Titanium to the composite matrix. The microstructures of the newly developed material were characterized and the wear behavior was studied under dry sliding conditions on a pin-on-disc tribometer. The relationship between the microstructure and wear behavior was identified. The absence of Al4C3 in the Al40Si/SiC and Al12Si20Ti/SiC coatings’ microstructures resulted in an abrasion mechanism instead of a delamination mechanism. The wear behavior changed along the sliding distances. During the first 200 m of sliding distances, the wear rate of all coatings was lower than the uncoated one due to their higher microhardness. For longer sliding distances, the wear resistance of the uncoated AA6082 was higher than the coated ones due to the formation of a lubricant oxide layer on the AA6082 worn surface. For 1000 m of wear distances, the wear behavior was different for each coating. The wear rate of the Al12Si/SiC coating continued growing due to the delamination mechanism and the presence of Al4C3 that acted as starting crack points. The wear rate of the Al40Si/SiC coating decreased due to the formation of a thin, superficial oxide layer. The wear rate of the Al12SiTi/SiC progressively decreased along the sliding distance to below the substrate wear rate.


2016 ◽  
Vol 254 ◽  
pp. 290-295
Author(s):  
Iosif Hulka ◽  
Ion Dragoş Uţu ◽  
Viorel Aurel Şerban ◽  
Alexandru Pascu ◽  
Ionut Claudiu Roată

Laser cladding process is used to obtain protective coatings using as heat source a laser. This melts the substrate and the feedstock material to create a protective coating and provides a strong metallurgical bond with minimal dilution of the base material and reduced heat affected zone. In the present study a commercial NiCrSiFeB composition was deposited by laser cladding process using different parameters onto the surface of a steel substrate. The obtained coatings were investigated in terms of microstructure, hardness and wear behavior. The experimental results revealed that the laser power had a considerable influence on the wear resistance of NiCrSiFeB coatings.


2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Ridvan Gecu ◽  
Ahmet Karaaslan

This study aims to investigate the effect of volume fraction of commercially pure titanium (CP-Ti) on microstructural, mechanical, and tribological features of A356 aluminum matrix composites. Vacuum-assisted melt infiltration casting was performed to produce composites with 50%, 65%, 75%, and 80% CP-Ti contents. CP-Ti sawdusts were assembled under mechanical pressure in order to attain porous one-piece CP-Ti preforms which were infiltrated by A356 melt at 730 °C under 10−5 Pa vacuum atmosphere. TiAl3 layer was formed at the interface between A356 and CP-Ti phases. Owing to increased diffusion time through decreased diffusion path length, both thickness and hardness of TiAl3 phase were increased with increasing CP-Ti ratio, whereas the best wear resistance was obtained at 65% CP-Ti ratio. The main reason for decrease in wear resistance of 75% and 80% CP-Ti reinforced composites was fragmentation of TiAl3 layer during wear process due to its excessively increased brittleness. Strongly bonded TiAl3 phase at the interface provided better wear resistance, while weakly bonded ones caused to multiply wear rate.


Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 673
Author(s):  
Ainhoa Riquelme ◽  
Pilar Rodrigo ◽  
María Dolores Escalera-Rodríguez ◽  
Joaquín Rams

Aluminum matrix composites reinforced with silicon carbide particles (SiCp) were deposited by laser cladding on AA6082 aluminum alloy. Different compositions of the matrix of the composites coating were used and different amounts of Si and Ti were added to a base of Al-12Si in order to control the reactivity between molten aluminum and SiCp during laser cladding. The corrosion behavior of the coatings deposited was evaluated in 3.5 wt.% NaCl solution using gravimetric analyses and electrochemical polarization tests. The corrosion products observed were Al(OH)3 and Al2O3, and they formed a layer that limited the evolution of corrosion. However, the presence of discontinuities in it reduced the corrosion resistance of the coating. The corrosion mechanisms were different depending on the coating composition. The addiction of Ti to the alloy allowed for better corrosion behavior for the composite coating than that of the aluminum substrate.


Author(s):  
Yasser Fouad ◽  
Khaled M. Ibrahim ◽  
Brando Okolo

First results of the influence of Equal Channel Angular Pressing (ECAP) on the wear behavior of the magnesium alloy AZ80 have been discussed. The evident grain refinement and redistribution of second phases in the 4 pass processed materials resulted in an increase of the hardness state in the AZ80 alloy. Wear tests conducted on a pin-on-disc set-up revealed better wear resistance for the 4 pass processed materials. Isothermal aging treatment, at 210°C for 10 hrs, of the ECAP processed materials showed that wear resistance properties are improved markedly. For incremental sliding speeds during the wear test, wear rate of the AZ80 alloy was found to increase.


Author(s):  
Zehra Jilham

ABSTRACTThe aim of this research is to study the mechanical properties and wear behavior of aluminum composite material (AMCs) reinforced with silicon carbide particles with varying percentages (0, 3, 6 and 9) wt. %. These composites samples were prepared by stir casting process. Tensile strength, compression strength, hardness and wear resistance of the prepared composites were analyzed. The result showed that adding SiC reinforced in Al matrix increased tensile strength, compression strength, wear resistance and hardness with increased wt. percentage of silicon carbide reinforced AMCs. Maximum tensile and compression strength and hardness showed at 9 wt. percentage SiC reinforced AMCs.


2019 ◽  
Vol 23 (1) ◽  
pp. 198-201 ◽  
Author(s):  
S. Sakthivelu ◽  
M. Meignanamoorthy ◽  
M. Ravichandran ◽  
P. P. Sethusundaram

AbstractThis research made an attempt to synthesize aluminum metal matrix composites through stir casting technique. The matrix material chosen in this study was AA7050 and the reinforcement material was ZrSiO4. The composites AA7050, AA7050-10%ZrSiO4, and AA7050-15%ZrSiO4were used. The wear behavior of the aluminum matrix composites was investigated by using pin-on-disc tribometer. The advanced material has substantial development in tribological behavior when the reinforcement percentage is increased. From the experimental results, it was confirmed that sliding distance of 1200 m, applied load of 3 N and sliding speed of 2 m/s result in minimum wear loss and coefficient of friction, while adding 10%ZrSiO4to the AA7050.


2010 ◽  
Vol 139-141 ◽  
pp. 398-401
Author(s):  
You Feng Zhang ◽  
Jun Li

In situ reaction synthesized TiB reinforced titanium matrix composites were fabricated using rapid non-equilibrium synthesis techniques of laser cladding. TiB/Ti composite coating was treated on Ti-6Al-4V surface using Ti and B powder mixture by laser cladding. Microstructure and dry sliding wear behavior of the in situ synthesized TiB/Ti composite coatings were investigated by optical microscopy (OM), scanning electron microscopy (SEM), X-ray diffraction analysis (XRD), energy-dispersive spectroscopy (EDS), hardness tester and friction and wear tester. The composite coatings consist of Ti, TiB and intermetallic compounds. The TiB reinforcement dispersed homogeneously in the composite coatings. The wear tests show that the friction coefficient and wear weight loss ratio of the coatings is lower than that of the Ti-6Al-4V alloy. The composite coating was reinforced by the in situ synthesized TiB ceramic particles. Based on the SEM observation, effects of scan speed on hardness and wear resistance of the laser cladding coatings were investigated and discussed.


Materials ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1611
Author(s):  
Jiayang Gu ◽  
Ruifeng Li ◽  
Shungao Chen ◽  
Yuhao Zhang ◽  
Shujin Chen ◽  
...  

A composite coating with enhanced mechanical properties including high hardness and excellent wear resistance was produced by laser cladding of mixed Ni45 and high-carbon ferrochrome powders on an ASTM 1045 steel substrate. Different quantities, ranging from 10 to 50 wt.% of high-carbon ferrochrome powder were added to the Ni45 powder to investigate the effect of mixture content on the cladding performance. The microstructure of the coatings were examined using scanning electron microscope, and the wear resistance was compared using a wear tester apparatus among the different cases. The results showed that the microstructure of the coating with 30 wt.% high-carbon ferrochrome content was mainly fine solid solution phase. With the increase of high-carbon ferrochrome content to 40 wt.% and above, cracks appeared on the cladding surface due to a large amount of chromium carbides formed during the process. The microhardness was enhanced remarkably by laser cladding the composite coating on the 1045 substrate, with 2.4 times higher than the hardness of the substrate when 30 wt.% high-carbon ferrochrome content was added. The best wear performance was achieved when the high-carbon ferrochrome content was 30 wt.%, demonstrating the smallest surface roughness and depth of wear marks. With further increased high-carbon ferrochrome content, microcracking and delamination were observed on the worn surfaces.


2010 ◽  
Vol 160-162 ◽  
pp. 450-455
Author(s):  
Kai Jin Huang ◽  
Chao Dong Tan ◽  
Chang Rong Zhou

To improve the wear property of magnesium alloys, Zr-based amorphous composite coatings have been fabricated on AZ91D magnesium alloy by laser cladding using mixed powders Zr55Al10Ni5Cu30/SiC. The microstructure of the coating was characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The wear resistance of the coatings was evaluated under dry sliding wear test condition at room temperature. The results show that the coatings mainly consist of amorphous and different crystalline phases. The coatings exhibit excellent wear resistance due to the recombination action of amorphous and different crystalline phases. The main wear mechanism of the coatings and the AZ91D sample are different, the former is abrasive wear and the latter is adhesive wear.


Sign in / Sign up

Export Citation Format

Share Document