Influence of Distance Between Focusing Lens and Sample Surface on Atomic Line and Ionic Line Intensities of Laser-Induced Silicon Plasmas

2019 ◽  
Vol 46 (11) ◽  
pp. 1111001
Author(s):  
杨雪 Yang Xue ◽  
张丹 Zhang Dan ◽  
陈安民 Chen Anmin ◽  
李苏宇 Li Suyu ◽  
姜远飞 Jiang Yuanfei ◽  
...  
2021 ◽  
Vol 25 (4) ◽  
pp. 308-312
Author(s):  
V.G. Garanin ◽  

This paper presents the characteristics of the modern Grand-Expert spectrometer for the analysis of metals and alloys. The spectrometer has an updated optical scheme and a new spectrum analyzer to solve a wide range of analytical tasks. The analytical capabilities of the spectrometer were investigated for the analysis of steels and high-purity copper and aluminum as an example. For each of the bases, the updated optical scheme made it possible to realize new opportunities for controlling the homogeneity of the sample material and the presence of micro-inclusions on the sample surface and for determining low impurity contents in the pure metal bases. The spectrometer uses a modern semiconductor spark generator with adjustable frequency, current intensity, and duration of individual spark pulses. Spectra of metal samples for individual spark pulses were obtained in real time for the investigated sample. The operation of the spectrometer in different modes and with different exposure times was tested to select the optimal parameters of calibration characteristics. Computer control provides full synchronization of the generator mode setting, argon feeding, and spectrum registration. For steels, we selected sparking modes with high stability of spectral line intensities and analyte concentrations, and for pure metals (copper and aluminum), modes providing low detection limits of impurity elements and good stability of the results.


2019 ◽  
Vol 73 (10) ◽  
pp. 1172-1182 ◽  
Author(s):  
Hyang Kim ◽  
Yoonji Jeon ◽  
Won Bae Lee ◽  
Sang-Ho Nam ◽  
Song-Hee Han ◽  
...  

Feasibility of a simple laser-induced breakdown spectroscopy (LIBS) device has been investigated for the analysis of Mg and Ca in edible salts. The LIBS spectrometer was assembled with a compact low-power diode-pumped solid-state laser (DPSSL) and a non-gated low-resolution handheld spectrometer. A simple sampling process was employed for on-site application. A piece of filter paper was dipped in the aqueous solution of a sample salt and dried for analysis using LIBS. Maintaining the sample surface height at the optimum position was critical to generate plasmas persistently due to the low pulse energy of the DPSSL. The varying height of the filter paper surface was monitored and compensated, while the sample stage was translated to collect spectra from different positions. The variation of line intensities of Mg and Ca could be attributed to the inhomogeneous distribution of dry residues. To correct this, the peak that consists of the Na(I) and C(II) lines at 568 nm was employed as a reference signal for intensity normalization of the analyte Mg(II) and Ca(II) lines. For edible salt products, the normalized Mg(II) and Ca(II) line intensities could be well correlated with the concentrations of Mg and Ca determined using inductively coupled plasma optical emission spectroscopy. Our results indicate that a simple LIBS device in combination with the simple sampling method is promising as an on-site salt quality assessment methodology.


Optik ◽  
2020 ◽  
Vol 220 ◽  
pp. 165137
Author(s):  
Junfeng Shao ◽  
Jin Guo ◽  
Qiuyun Wang ◽  
Anmin Chen ◽  
Mingxing Jin

Author(s):  
Barbara Boldrini ◽  
Edwin Ostertag ◽  
Karsten Rebner ◽  
Dieter Oelkrug

AbstractThe article analyzes experimentally and theoretically the influence of microscope parameters on the pinhole-assisted Raman depth profiles in uniform and composite refractive media. The main objective is the reliable mapping of deep sample regions. The easiest to interpret results are found with low magnification, low aperture, and small pinholes. Here, the intensities and shapes of the Raman signals are independent of the location of the emitter relative to the sample surface. Theoretically, the results can be well described with a simple analytical equation containing the axial depth resolution of the microscope and the position of the emitter. The lower determinable object size is limited to 2–4 μm. If sub-micrometer resolution is desired, high magnification, mostly combined with high aperture, becomes necessary. The signal intensities and shapes depend now in refractive media on the position relative to the sample surface. This aspect is investigated on a number of uniform and stacked polymer layers, 2–160 μm thick, with the best available transparency. The experimental depth profiles are numerically fitted with excellent accuracy by inserting a Gaussian excitation beam of variable waist and fill fraction through the focusing lens area, and by treating the Raman emission with geometric optics as spontaneous isotropic process through the lens and the variable pinhole, respectively. The intersectional area of these two solid angles yields the leading factor in understanding confocal (pinhole-assisted) Raman depth profiles. Graphical abstract


1976 ◽  
Vol 32 ◽  
pp. 343-349
Author(s):  
Yu.V. Glagolevsky ◽  
K.I. Kozlova ◽  
V.S. Lebedev ◽  
N.S. Polosukhina

SummaryThe magnetic variable star 21 Per has been studied from 4 and 8 Å/mm spectra obtained with the 2.6 - meter reflector of the Crimean Astrophysical Observatory. Spectral line intensities (Wλ) and radial velocities (Vr) have been measured.


Author(s):  
Gert Ehrlich

The field ion microscope, devised by Erwin Muller in the 1950's, was the first instrument to depict the structure of surfaces in atomic detail. An FIM image of a (111) plane of tungsten (Fig.l) is typical of what can be done by this microscope: for this small plane, every atom, at a separation of 4.48Å from its neighbors in the plane, is revealed. The image of the plane is highly enlarged, as it is projected on a phosphor screen with a radius of curvature more than a million times that of the sample. Müller achieved the resolution necessary to reveal individual atoms by imaging with ions, accommodated to the object at a low temperature. The ions are created at the sample surface by ionization of an inert image gas (usually helium), present at a low pressure (< 1 mTorr). at fields on the order of 4V/Å.


Author(s):  
T.S. Savage ◽  
R. Ai ◽  
D. Dunn ◽  
L.D. Marks

The use of lasers for surface annealing, heating and/or damage has become a routine practice in the study of materials. Lasers have been closely looked at as an annealing technique for silicon and other semiconductors. They allow for local heating from a beam which can be focused and tuned to different wavelengths for specific tasks. Pulsed dye lasers allow for short, quick bursts which can allow the sample to be rapidly heated and quenched. This short, rapid heating period may be important for cases where diffusion of impurities or dopants may not be desirable.At Northwestern University, a Candela SLL - 250 pulsed dye laser, with a maximum power of 1 Joule/pulse over 350 - 400 nanoseconds, has been set up in conjunction with a Hitachi UHV-H9000 transmission electron microscope. The laser beam is introduced into the surface science chamber through a series of mirrors, a focusing lens and a six inch quartz window.


Author(s):  
A. K. Rai ◽  
P. P. Pronko

Several techniques have been reported in the past to prepare cross(x)-sectional TEM specimen. These methods are applicable when the sample surface is uniform. Examples of samples having uniform surfaces are ion implanted samples, thin films deposited on substrates and epilayers grown on substrates. Once device structures are fabricated on the surfaces of appropriate materials these surfaces will no longer remain uniform. For samples with uniform surfaces it does not matter which part of the surface region remains in the thin sections of the x-sectional TEM specimen since it is similar everywhere. However, in order to study a specific region of a device employing x-sectional TEM, one has to make sure that the desired region is thinned. In the present work a simple way to obtain thin sections of desired device region is described.


Sign in / Sign up

Export Citation Format

Share Document