Electric energy harvester for microbial fuel cells

2013 ◽  
Vol 21 (7) ◽  
pp. 1707-1712 ◽  
Author(s):  
莫冰 MO Bing ◽  
黄荣海 HUANG Rong-hai ◽  
赵峰 ZHAO Feng ◽  
凌朝东 LING Chao-dong
2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. G. Capodaglio ◽  
D. Molognoni ◽  
E. Dallago ◽  
A. Liberale ◽  
R. Cella ◽  
...  

Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m3, with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.


Sensors ◽  
2019 ◽  
Vol 19 (6) ◽  
pp. 1378 ◽  
Author(s):  
Edith Osorio de la Rosa ◽  
Javier Vázquez Castillo ◽  
Mario Carmona Campos ◽  
Gliserio Barbosa Pool ◽  
Guillermo Becerra Nuñez ◽  
...  

The emergence of modern technologies, such as Wireless Sensor Networks (WSNs), the Internet-of-Things (IoT), and Machine-to-Machine (M2M) communications, involves the use of batteries, which pose a serious environmental risk, with billions of batteries disposed of every year. However, the combination of sensors and wireless communication devices is extremely power-hungry. Energy Harvesting (EH) is fundamental in enabling the use of low-power electronic devices that derive their energy from external sources, such as Microbial Fuel Cells (MFC), solar power, thermal and kinetic energy, among others. Plant Microbial Fuel Cell (PMFC) is a prominent clean energy source and a step towards the development of self-powered systems in indoor and outdoor environments. One of the main challenges with PMFCs is the dynamic power supply, dynamic charging rates and low-energy supply. In this paper, a PMFC-based energy harvester system is proposed for the implementation of autonomous self-powered sensor nodes with IoT and cloud-based service communication protocols. The PMFC design is specifically adapted with the proposed EH circuit for the implementation of IoT-WSN based applications. The PMFC-EH system has a maximum power point at 0.71 V, a current density of 5 mA cm − 2 , and a power density of 3.5 mW cm − 2 with a single plant. Considering a sensor node with a current consumption of 0.35 mA, the PMFC-EH green energy system allows a power autonomy for real-time data processing of IoT-based low-power WSN systems.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 69
Author(s):  
B Antony Fantin ◽  
S Ramesh ◽  
J S.Sudarsan ◽  
P Vanamoorthy Kumaran

Due to depletion of coal and other natural fuel there is an urgent need to find eco-friendly and workable technology for alternate energy. Microbial fuel cells is considered as assuringmethod to extract energy from various sources of wastewater and to generate electricity. But, due to practical limits, MFCs are still unsuitable to meet high power demands. Since wastewater contains several contaminants including organic substances, therefore, generation of electric energy from wastewater using MFC can offer an alternate solution for electricity issue as well as to reduce environmental pollution. Microbial fuel cells harvest electrical energy from wastewater with the help of microorganisms present within the wastewater. The energy confined in organic matter converted in to useful electric current. In Microbial Fuel Cell electrons from the microorganisms transfer from a reduced electron donor to an electron acceptor at a higher electrochemical potential. The study highlights that wastewater with high organic content found to be more effective and it also gives good energy production. If the same concept implemented in large scale it can help in achieving sustainable development and it helps in achieving 3R formula in the process of wastewater treatment. 


2021 ◽  
Vol 46 ◽  
pp. 101282
Author(s):  
Pratiksha Srivastava ◽  
Andrew Belford ◽  
Rouzbeh Abbassi ◽  
Mohsen Asadnia ◽  
Vikram Garaniya ◽  
...  

Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 673
Author(s):  
Jing Guo ◽  
Jianping Cheng ◽  
Jiaquan Wang ◽  
Shuheng Hu

A rectangular double chamber with trivalent arsenic as the electron donor of the biological anode was constructed by microbial fuel cells (MFC), and the feasibility of the MFC simultaneous degradation of trivalent arsenic and nitrate was studied. Experimental results show that the co-matrix-coupled MFC reactor oxidizes trivalent arsenic in an anode chamber and degrades nitrate in the cathode chamber. The removal rate of trivalent arsenic is about 63.35%, and the degradation rate of nitrate is about 55.95% during the complete and stable operation period. MFC can continuously output electric energy, and the maximum output voltage is 388 mV. We compared and analyzed the main functional microflora of biofilm microorganisms in an anode chamber. In the long-term arsenic-polluted environment, the activity of Acinetobacter, Pseudomonas bacteria with arsenic resistance, was improved. It is inferred that a fraction of trivalent arsenic was oxidized to pentavalent arsenic by electrode-attached microorganisms. While remaining trivalent, arsenic was taken up by the suspended bacterial biomass and converted into stable arsenide. The results of this study have theoretical reference value for the expansion of the MFC application scope.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
N’Dah Joel Koffi ◽  
Satoshi Okabe

Abstract Although microbial fuel cells (MFCs) can produce renewable energy from wastewater, the generated power is practically unusable. To extract usable power from an MFC fed with wastewater, we newly developed a low voltage booster multiplier (LVBM), which is composed of a self-oscillating LVB and multistage voltage multiplier circuits (VMCs). The low output MFC voltage (ca. 0.4 V) was successfully boosted up to 99 ± 2 V, which was the highest voltage that has been ever reported, without voltage reversal by connecting an LVB with 20-stage VMCs. Moreover, the boosted voltage (81 ± 1 V) was stably maintained for > 40 h even after disconnecting the LVBM from the MFC. The energy harvesting efficiency of LVBM was > 80% when an LVB with 4-stage VMCs was charged to 9.3 V. These results clearly suggest that the proposed LVBM system is an efficient and self-starting energy harvester and storage for low-power generating MFCs.


Sign in / Sign up

Export Citation Format

Share Document