scholarly journals Microbial Fuel Cells for Direct Electrical Energy Recovery from Urban Wastewaters

2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
A. G. Capodaglio ◽  
D. Molognoni ◽  
E. Dallago ◽  
A. Liberale ◽  
R. Cella ◽  
...  

Application of microbial fuel cells (MFCs) to wastewater treatment for direct recovery of electric energy appears to provide a potentially attractive alternative to traditional treatment processes, in an optic of costs reduction, and tapping of sustainable energy sources that characterizes current trends in technology. This work focuses on a laboratory-scale, air-cathode, and single-chamber MFC, with internal volume of 6.9 L, operating in batch mode. The MFC was fed with different types of substrates. This study evaluates the MFC behaviour, in terms of organic matter removal efficiency, which reached 86% (on average) with a hydraulic retention time of 150 hours. The MFC produced an average power density of 13.2 mW/m3, with a Coulombic efficiency ranging from 0.8 to 1.9%. The amount of data collected allowed an accurate analysis of the repeatability of MFC electrochemical behaviour, with regards to both COD removal kinetics and electric energy production.

2018 ◽  
Vol 7 (3.12) ◽  
pp. 69
Author(s):  
B Antony Fantin ◽  
S Ramesh ◽  
J S.Sudarsan ◽  
P Vanamoorthy Kumaran

Due to depletion of coal and other natural fuel there is an urgent need to find eco-friendly and workable technology for alternate energy. Microbial fuel cells is considered as assuringmethod to extract energy from various sources of wastewater and to generate electricity. But, due to practical limits, MFCs are still unsuitable to meet high power demands. Since wastewater contains several contaminants including organic substances, therefore, generation of electric energy from wastewater using MFC can offer an alternate solution for electricity issue as well as to reduce environmental pollution. Microbial fuel cells harvest electrical energy from wastewater with the help of microorganisms present within the wastewater. The energy confined in organic matter converted in to useful electric current. In Microbial Fuel Cell electrons from the microorganisms transfer from a reduced electron donor to an electron acceptor at a higher electrochemical potential. The study highlights that wastewater with high organic content found to be more effective and it also gives good energy production. If the same concept implemented in large scale it can help in achieving sustainable development and it helps in achieving 3R formula in the process of wastewater treatment. 


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1289
Author(s):  
Madiha Tariq ◽  
Jin Wang ◽  
Zulfiqar Ahmad Bhatti ◽  
Muhammad Bilal ◽  
Adeel Jalal Malik ◽  
...  

Microbial fuel cells (MFCs) are a recent biotechnology that can simultaneously produce electricity and treat wastewater. As the nature of industrial wastewater is very complex, and it may contain a variety of substrates—such as carbohydrates, proteins, lipids, etc.—previous investigations dealt with treatment of individual pollutants in MFCs; the potential of acetic acid, sucrose, albumin, blood, and their mixture has rarely been reported. Hence, the current investigation explored the contribution of each substrate, both separately and in mixture. The voltage generation potential, current, and power density of five different substrates—namely, acetic acid, sucrose, albumin, blood, and a mixture of all of the substrates—was tested in a dual-chambered, anaerobic MFC operated at 35 °C. The reaction time of the anaerobic batch mode MFC was 24 h, and each substrate was treated for 7 runs under the same conditions. The dual-chambered MFC consisted of anode and cathode chambers; the anode chamber contained the biocatalyst (sludge), while the cathode chamber contained the oxidizing material (KMnO4). The maximum voltage of 769 mV was generated by acetic acid, while its corresponding values of current and power density were 7.69 mA and 347.85 mW, respectively. Similarly, being a simple and readily oxidizable substrate, acetic acid exhibited the highest COD removal efficiency (85%) and highest Coulombic efficiency (72%) per run. The anode accepted the highest number of electrons (0.078 mmol/L) when acetic acid was used as a substrate. The voltage, current, and power density generated were found to be directly proportional to COD concentration. The least voltage (61 mV), current (0.61 mA), and power density (2.18 mW) were observed when blood was treated in the MFC. Further research should be focused on testing the interaction of two or more substrates simultaneously in the MFC.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 168-178
Author(s):  
Marzia Quaglio ◽  
Daniyal Ahmed ◽  
Giulia Massaglia ◽  
Adriano Sacco ◽  
Valentina Margaria ◽  
...  

Sediment microbial fuel cells (SMFCs) are energy harvesting devices where the anode is buried inside marine sediment, while the cathode stays in an aerobic environment on the surface of the water. To apply this SCMFC as a power source, it is crucial to have an efficient power management system, leading to development of an effective energy harvesting technique suitable for such biological devices. In this work, we demonstrate an effective method to improve power extraction with SMFCs based on anodes alternation. We have altered the setup of a traditional SMFC to include two anodes working with the same cathode. This setup is compared with a traditional setup (control) and a setup that undergoes intermittent energy harvesting, establishing the improvement of energy collection using the anodes alternation technique. Control SMFC produced an average power density of 6.3 mW/m2 and SMFC operating intermittently produced 8.1 mW/m2. On the other hand, SMFC operating using the anodes alternation technique produced an average power density of 23.5 mW/m2. These results indicate the utility of the proposed anodes alternation method over both the control and intermittent energy harvesting techniques. The Anode Alternation can also be viewed as an advancement of the intermittent energy harvesting method.


2012 ◽  
Vol 66 (4) ◽  
pp. 748-753 ◽  
Author(s):  
Jaecheul Yu ◽  
Younghyun Park ◽  
Haein Cho ◽  
Jieun Chun ◽  
Jiyun Seon ◽  
...  

Microbial fuel cells (MFCs) can convert chemical energy to electricity using microbes as catalysts and a variety of organic wastewaters as substrates. However, electron loss occurs when fermentable substrates are used because fermentation bacteria and methanogens are involved in electron flow from the substrates to electricity. In this study, MFCs using glucose (G-MFC), propionate (P-MFC), butyrate (B-MFC), acetate (A-MFC), and a mix (M-MFC, glucose:propionate:butyrate:acetate = 1:1:1:1) were operated in batch mode. The metabolites and microbial communities were analyzed. The current was the largest electron sink in M-, G-, B-, and A-MFCs; the initial chemical oxygen demands (CODini) involved in current production were 60.1% for M-MFC, 52.7% for G-MFC, 56.1% for B-MFC, and 68.3% for A-MFC. Most of the glucose was converted to propionate (40.6% of CODini) and acetate (21.4% of CODini) through lactate (80.3% of CODini) and butyrate (6.1% of CODini). However, an unknown source (62.0% of CODini) and the current (34.5% of CODini) were the largest and second-largest electron sinks in P-MFC. Methane gas was only detected at levels of more than 10% in G- and M-MFCs, meaning that electrochemically active bacteria (EAB) could out-compete acetoclastic methanogens. The microbial communities were different for fermentable and non-fermentable substrate-fed MFCs. Probably, bacteria related to Lactococcus spp. found in G-MFCs with fermentable substrates would be involved in both fermentation and electricity generation. Acinetobacter-like species, and Rhodobacter-like species detected in all the MFCs would be involved in oxidation of organic compounds and electricity generation.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hsuanyi Huang ◽  
Rong Li ◽  
Cuixia Li ◽  
Feng Zheng ◽  
Giovanni A. Ramirez ◽  
...  

Abstract To drive the next ‘technical revolution’ towards commercialization, we must develop sustainable energy materials, procedures, and technologies. The demand for electrical energy is unlikely to diminish over the next 50 years, and how different countries engage in these challenges will shape future discourse. This perspective summarizes the technical aspects of nanomaterials’ design, evaluation, and uses. The applications include solid oxide fuel cells (SOFCs), solid oxide electrolysis cells (SOEC), microbial fuel cells (MFC), supercapacitors, and hydrogen evolution catalysts. This paper also described energy carriers such as ammonia which can be produced electrochemically using SOEC under ambient pressure and high temperature. The rise of electric vehicles has necessitated some form of onboard storage of fuel or charge. The fuels can be generated using an electrolyzer to convert water to hydrogen or nitrogen and steam to ammonia. The charge can be stored using a symmetrical supercapacitor composed of tertiary metal oxides with self-regulating properties to provide high energy and power density. A novel metal boride system was constructed to absorb microwave radiation under harsh conditions to enhance communication systems. These resources can lower the demand for petroleum carbon in portable power devices or replace higher fossil carbon in stationary power units. To improve the energy conversion and storage efficiency, we systematically optimized synthesis variables of nanomaterials using artificial neural network approaches. The structural characterization and electrochemical performance of the energy materials and devices provide guidelines to control new structures and related properties. Systemic study on energy materials and technology provides a feasible transition from traditional to sustainable energy platforms. This perspective mainly covers the area of green chemistry, evaluation, and applications of nanomaterials generated in our laboratory with brief literature comparison where appropriate. The conceptual and experimental innovations outlined in this perspective are neither complete nor authoritative but a snapshot of selecting technologies that can generate green power using nanomaterials.


Author(s):  
Diogo Ortiz Machado ◽  
Diana Francisca Adamatti ◽  
Eder Mateus Nunes Gonçalves

Microbial Fuel Cells (MFC) could generate electrical energy combined with the wastewater treatment and they can be a promising technological opportunity. This chapter presents an agent-based model and simulation of MFC comparing it with analytical models, to show that this approach could model and simulate these problems with more abstraction and with excellent results.


2013 ◽  
Vol 21 (7) ◽  
pp. 1707-1712 ◽  
Author(s):  
莫冰 MO Bing ◽  
黄荣海 HUANG Rong-hai ◽  
赵峰 ZHAO Feng ◽  
凌朝东 LING Chao-dong

2015 ◽  
Vol 12 (3) ◽  
pp. 293 ◽  
Author(s):  
Oihane Monzon ◽  
Yu Yang ◽  
Cong Yu ◽  
Qilin Li ◽  
Pedro J. J. Alvarez

Environmental context The treatment of extremely saline, high-strength wastewaters while producing electricity represents a great opportunity to mitigate environmental effects and recover resources associated with wastes from shale oil and gas production. This paper demonstrates that extreme halophilic microbes can produce electricity at salinity up to 3- to 7-fold higher than sea water. Abstract Many industries generate hypersaline wastewaters with high organic strength, which represent a major challenge for pollution control and resource recovery. This study assesses the potential for microbial fuel cells (MFCs) to treat such wastewaters and generate electricity under extreme salinity. A power density of up to 71mWm–2 (318mWm–3) with a Coulombic efficiency of 42% was obtained with 100gL–1 NaCl, and the capability of MFCs to generate electricity in the presence of up to 250gL–1 NaCl was demonstrated for the first time. Pyrosequencing analysis of the microbial community colonising the anode showed the predominance of a single genus, Halanaerobium (85.7%), which has been found in late flowback fluids and is widely distributed in shale formations and oil reservoirs. Overall, this work encourages further research to assess the feasibility of MFCs to treat hypersaline wastewaters generated by the oil and gas industry.


Sign in / Sign up

Export Citation Format

Share Document