Human Activity Recognition Using The Human Skeleton Provided by Kinect

2021 ◽  
Vol 17 (2) ◽  
pp. 183-189
Author(s):  
Heba Salim ◽  
Musaab Alaziz ◽  
Turki Abdalla

In this paper, a new method is proposed for people tracking using the human skeleton provided by the Kinect sensor, Our method is based on skeleton data, which includes the coordinate value of each joint in the human body. For data classification, the Support Vector Machine (SVM) and Random Forest techniques are used. To achieve this goal, 14 classes of movements are defined, using the Kinect Sensor to extract data containing 46 features and then using them to train the classification models. The system was tested on 12 subjects, each of whom performed 14 movements in each experiment. Experiment results show that the best average accuracy is 90.2 % for the SVM model and 99 % for the Random forest model. From the experiments, we concluded that the best distance between the Kinect sensor and the human body is one meter.

RSC Advances ◽  
2014 ◽  
Vol 4 (106) ◽  
pp. 61624-61630 ◽  
Author(s):  
N. S. Hari Narayana Moorthy ◽  
Silvia A. Martins ◽  
Sergio F. Sousa ◽  
Maria J. Ramos ◽  
Pedro A. Fernandes

Classification models to predict the solvation free energies of organic molecules were developed using decision tree, random forest and support vector machine approaches and with MACCS fingerprints, MOE and PaDEL descriptors.


2011 ◽  
Vol 3 ◽  
pp. BECB.S7503 ◽  
Author(s):  
Sangeetha Subramaniam ◽  
Monica Mehrotra ◽  
Dinesh Gupta

There is an urgent need to develop novel anti-malarials in view of the increasing disease burden and growing resistance of the currently used drugs against the malarial parasites. Proliferation inhibitors targeting P. falciparum intraerythrocytic cycle are one of the important classes of compounds being explored for its potential to be novel antimalarials. Support Vector Machine (SVM) based model developed by us can facilitate rapid screening of large and diverse chemical libraries by reducing false hits and prioritising compounds before setting up expensive High Throughput Screening experiment. The SVM model, trained with molecular descriptors of proliferation inhibitors and non-inhibitors, displayed a satisfactory performance on cross validations and independent data set, with an average accuracy of 83% and AUC of 0.88. Intriguingly, the method displayed remarkable accuracy for the recently submitted P. falciparum whole cell screening datasets. The method also predicted several inhibitors in the National Cancer Institute diversity set, mostly similar to the known inhibitors.


Author(s):  
L. E. Christovam ◽  
G. G. Pessoa ◽  
M. H. Shimabukuro ◽  
M. L. B. T. Galo

<p><strong>Abstract.</strong> Land Use and Land Cover (LULC) information is an important data source for modeling environmental variables, so it is essential to develop high quality LULC maps. The hundreds of continuous spectral bands gathered with hyperspectral sensors provide high spectral detail and consequently confirm hyperspectral remote sensing as an appropriate option for many LULC applications. Despite increased spectral detail, issues like high dimensionality, huge volume of data and redundant information, mean that hyperspectral image classification is a complex task. It is therefore essential to develop classification approaches that deals with these issues. Since classification results are directly dependent on the dataset used, it is fundamental to compare and validate the classification approaches in public datasets. With this in mind, aiming to provide a baseline, four classification models in the relatively new hyperspectral HyRANK dataset were evaluated. The classification models were defined with three well-known classification algorithms: Spectral Angle Mapper (SAM), Support Vector Machine (SVM) and Random Forest (RF). A classification model with SAM and another with RF were defined with the 176 surface reflectance bands. A dimensionality reduction with principal component analysis was carried out and a classification model with SVM and another with RF were defined using 14 principal components as features. The results show that SVM and RF algorithms outperformed by far the SAM in terms of accuracy, and that the RF is slightly better than the SVM in this respect. It is also possible to see from the results that the use of principal components as features provided an improvement in the accuracy of the RF and an improvement of 28% in the time spent fitting the classification model.</p>


2021 ◽  
Vol 13 (22) ◽  
pp. 12797
Author(s):  
Qun Yu ◽  
Masoud Monjezi ◽  
Ahmed Salih Mohammed ◽  
Hesam Dehghani ◽  
Danial Jahed Armaghani ◽  
...  

Back-break is an adverse event in blasting works that causes the instability of mine walls, equipment collapsing, and reduction in effectiveness of drilling. Therefore, it boosts the total cost of mining operations. This investigation intends to develop optimized support vector machine models to forecast back-break caused by blasting. The Support Vector Machine (SVM) model was optimized using two advanced metaheuristic algorithms, including whale optimization algorithm (WOA) and moth–flame optimization (MFO). Before the models’ development, an evolutionary random forest (ERF) technique was used for input selection. This model selected five inputs out of 10 candidate inputs to be used to predict the back break. These two optimized SVM models were evaluated using various performance criteria. The performance of these two models was also compared with other hybridized SVM models. In addition, a sensitivity evaluation was made to find how the selected inputs influence the back-break magnitude. The outcomes of this study demonstrated that both the SVM–MFO and SVM–WOA improved the performance of the standard SVM. Additionally, the SVM–MFO showed a better performance than the SVM–WOA and other hybridized SVM models. The outcomes of this research recommend that the SVM–MFO can be considered as a powerful model to forecast the back-break induced by blasting.


2013 ◽  
Vol 411-414 ◽  
pp. 2373-2376
Author(s):  
Lu Pan ◽  
Sheng Ji Rong ◽  
Chang Hui Yu ◽  
Chun Xia Jin ◽  
Quan Yin Zhu

In order to obtain suit commodity price forecasting model and help consumers have the better reference resources when they buy mobile phones, cell phones price forecasting on training step is discussed in this paper. One year price for ten types mobile phone which extracted from http://www.jd.com/ is used as the original data to improve Support Vector Machine (SVM) model based on the training step. According to this forecasting method, the experiments are implemented under the different training step for different types cell phones depend on the accuracy rata. Comparing the experimental results with the original data, the forecasting average accuracy obtains 94.48 percent. But with the training step growth, the efficiency of model is cutting down unceasingly. Experiment results prove that the research is meaningful and useful and it is not only for consumers, but also for businesses in the cell phones market.


2018 ◽  
Vol 1 (1) ◽  
pp. 120-130 ◽  
Author(s):  
Chunxiang Qian ◽  
Wence Kang ◽  
Hao Ling ◽  
Hua Dong ◽  
Chengyao Liang ◽  
...  

Support Vector Machine (SVM) model optimized by K-Fold cross-validation was built to predict and evaluate the degradation of concrete strength in a complicated marine environment. Meanwhile, several mathematical models, such as Artificial Neural Network (ANN) and Decision Tree (DT), were also built and compared with SVM to determine which one could make the most accurate predictions. The material factors and environmental factors that influence the results were considered. The materials factors mainly involved the original concrete strength, the amount of cement replaced by fly ash and slag. The environmental factors consisted of the concentration of Mg2+, SO42-, Cl-, temperature and exposing time. It was concluded from the prediction results that the optimized SVM model appeared to perform better than other models in predicting the concrete strength. Based on SVM model, a simulation method of variables limitation was used to determine the sensitivity of various factors and the influence degree of these factors on the degradation of concrete strength.


Sign in / Sign up

Export Citation Format

Share Document