scholarly journals Dean Vortex for Laminar Flows in Curved Pipes with Various Cross-Sections

Author(s):  
Siham Ajgoun ◽  
Jaafar Khalid Naciri ◽  
Rabha Khatyr

Curved pipes flows are encountered in different areas such as heat transfer, chaotic mixing, separation of mixtures in pipes, or blood circulation among others and exhibit a variety of characteristics depending on the ranges of Dean numbers and pipe curvatures. Studies on curved pipes flows usually consider the cases of circular, elliptical, and rectangular shapes for the cross sections of the pipe. The present work extends the availability of asymptotic analytical solutions to new ranges of cross-sectional shapes while considering fully developed steady state flows at low Dean numbers. The new shapes are given by a polar equation R* (q) satisfying the relation 1-R^(*2) (q)+dR^(*y) (q)sin(yq)=0 where d and y are parameters. The zero-order azimuthal velocity profiles for various cross-sections are given by exact analytical solutions. Solutions for the nonhomogeneous biharmonic equation for the secondary flows are given by using exact expressions for the particular solutions. Furthermore, the Fourier series decomposition of the solution is adopted to determine the integration constants that allow satisfying the non-slip boundary conditions. Solutions are presented for semi triangular (y=3) , square (y=4), and pentagonal (y=5) cross sections shapes. It is found that the velocity distribution and the Dean’s vortexes intensities are modified in function of the cross-section shapes.

2010 ◽  
Vol 638-642 ◽  
pp. 675-680 ◽  
Author(s):  
Martina Thomann ◽  
Nina von der Höh ◽  
Dirk Bormann ◽  
Dina Rittershaus ◽  
C. Krause ◽  
...  

Current research focuses on magnesium based alloys in the course of searching a resorbable osteosynthetic material which provides sufficient mechanical properties besides a good biocompatibility. Previous studies reported on a favorable biocompatibility of the alloys LAE442 and MgCa0.8. The present study compared the degradation process of cylindrical LAE442 and MgCa0.8 implants after 12 months implantation duration. Therefore, 10 extruded implants (2.5 x 25 mm, cross sectional area 4.9 mm²) of both alloys were implanted into the medullary cavity of both tibiae of rabbits for 12 months. After euthanization, the right bone-implant-compound was scanned in a µ-computed tomograph (µCT80, ScancoMedical) and nine uniformly distributed cross-sections of each implant were used to determine the residual implants´ cross sectional area (Software AxioVisionRelease 4.5, Zeiss). Left implants were taken out of the bone carefully. After weighing, a three-point bending test was carried out. LAE442 implants degraded obviously slower and more homogeneously than MgCa0.8. The mean residual cross sectional area of LAE442 implants was 4.7 ± 0.07 mm². MgCa0.8 showed an area of only 2.18 ± 1.03 mm². In contrast, the loss in volume of LAE442 pins was more obvious. They lost 64 % of their initial weight. The volume of MgCa0.8 reduced clearly to 54.4 % which corresponds to the cross sectional area results. Three point bending tests revealed that LAE442 showed a loss in strength of 71.2 % while MgCa0.8 lost 85.6 % of its initial strength. All results indicated that LAE442 implants degraded slowly, probably due to the formation of a very obvious degradation layer. Degradation of MgCa0.8 implants was far advanced.


2020 ◽  
Author(s):  
J. Lee ◽  
et al.

<div>Figure 6. Interpretative cross sections illustrating the cross-sectional geometry of several paleovalleys. See Figure 3 for location of all cross sections and Figure 8 for location of cross section CCʹ. Cross sections AAʹ and BBʹ are plotted at the same scale, and cross section CCʹ is plotted at a smaller scale. Figure 6 is intended to be viewed at a width of 45.1 cm.</div>


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xibing Hu ◽  
Rui Chen ◽  
Yuxuan Xiang ◽  
Yafang Chen ◽  
Qingshan Li

Steel structures are usually damaged by disasters. According to the influence law of the damage on the elastic modulus of steel obtained by the mechanical test of damaged steel, the average elastic moduli of H-section steel members were analyzed. The equations for calculating the average elastic moduli of damaged H-section steel members at different damage degrees were obtained. By using the analytical cross-sectional method, the cross-sectional M-Φ-P relationships and the dimensionless parameter equations of the H-sections in the full-sectional elastic distribution, single-sided plastic distribution, and double-sided plastic distribution were derived. On the basis of the cross-sectional M-Φ-P relationships and dimensionless parameters of actual steel members, the approximate calculation equations for the damaged cross sections were obtained. The Newmark method was used to analyze the deformation of damaged steel columns. Analytical results show good agreement with the test results. The equations and methods proposed in this study have high computational accuracy, and these can be applied to the cross-sectional M-Φ-P relationships and deformation calculation of damaged steel members.


2021 ◽  
Author(s):  
Xu Yin ◽  
Zhixun Yang ◽  
Dongyan Shi ◽  
Jun Yan ◽  
Lifu Wang ◽  
...  

Abstract The umbilical which consists of hydraulic tubes, electrical cables and optical cables is a key equipment in the subsea production system. Each components perform different physical properties, so different cross-sections will present different geometrical characteristic, carrying capacities, the cost and the ease of manufacture. Therefore, the cross-sectional layout design of the umbilical is a typical multi-objective optimization problem. A mathematical model of the cross-sectional layout considering geometric and mechanical properties is proposed, and the genetic algorithm is introduced to copy with the optimization model in this paper. A steepest descent operator is embedded into the basic genetic algorithm, while the appropriate fitness function and the selection operator are advanced. The optimization strategy of the cross-sectional layout based on the hybrid genetic algorithm is proposed with the fast convergence and the great probability for global optimization. Finally, the cross-section of an umbilical case is performed to obtain the optimal the cross-sectional layout. The geometric and mechanical performance of results are compared with the initial design, which verify the feasibility of the proposed algorithm.


2001 ◽  
Vol 79 (11) ◽  
pp. 1257-1261 ◽  
Author(s):  
Jinxing Lin ◽  
D A Sampson ◽  
R Ceulemans

Resin canals are an important taxonomic characteristic in conifers. In this paper we examined within- and between-needle variation of the cross-sectional number of resin canals in Scots pine (Pinus sylvestris L.). Variation within needles was determined from 12 free-hand sections taken along the whole length of foliage collected from a common crown position. The effect of crown location and tree age on resin-canal density was also examined from the midpoint cross sections of 450 Scots pine needles collected from interior and exterior locations from the top, middle, and bottom of 25 crowns of trees ranging in age from 8 to 70 years. Within-needle resin-canal density varied with needle length. Two resin canals were typical for the basal and the terminal needle cross sections. There were 3.2 and 8.6 resin canals for cross sections taken from 10 and 30% of the needle length from the basal sheath, respectively. Resin-canal density was largest, and relatively constant, between 30 and 80% of the needle length. We found significant differences in the cross-sectional number of needle resin canals, as influenced by crown positions and tree age. Resin-canal density increased with foliage height. Foliage from the top one-third of crowns had significantly more resin canals than foliage from the bottom. Foliage collected from the crown interior (proximal to the stem) had fewer resin canals than samples from the crown edge. Resin-canal density increased from 7.1 to 10.3 as tree age increased from 8 to 70 years. These results suggest that crown position and tree age need to be incorporated into the sampling protocols used to establish species standards in resin-canal density, at least for Scots pine, if meaningful comparisons are to be made.Key words: resin canal, needle age, crown position, needle anatomy, Pinus sylvestris.


2019 ◽  
Vol 22 (12) ◽  
pp. 2605-2619
Author(s):  
Denghu Jing ◽  
Shuangyin Cao ◽  
Theofanis Krevaikas ◽  
Jun Bian

This article proposes a new connection between a steel bearing and a reinforced concrete column, which is mainly used for provisionally providing jack support in existing reinforced concrete structures. In this suggested connection joint, the steel bearing consisted of two or four symmetrical components assembled by high-strength bolts, which surrounds the reinforced concrete column by a tapered tube and balances the vertical load via the friction force between the tapered tube and concrete, that is, through a self-locking mechanism. The proposed connection joint can be assembled easily at a construction site and can also be disassembled and reused many times. To demonstrate the feasibility of this type of connection joint, a simple test was conducted to illustrate the concept, that is, a total of four medium-scale steel bearing–reinforced concrete column connections with circular cross sections were fabricated and tested under axial loading. The test results showed that the steel bearing–reinforced concrete column connection based on self-locking mechanism exhibited good working performance. Furthermore, a simplified formula to predict the axial stiffness of the connection joint was presented. From the tests and the proposed formula, the most important factors that influence the axial stiffness of this type of connection joint on the premise of an elastic working state are the slope of the tapered tube, the height of the steel bearing, the thickness of the tapered tube, the cross section of the reinforced concrete column, the cross-sectional area of all the connecting bolts, the proportion of the number of top bolts, the area of the top ring plate, and the effective contact area ratio.


2015 ◽  
Vol 26 (5) ◽  
pp. 795-819
Author(s):  
P. E. WESTWOOD ◽  
F. T. SMITH

The theoretical investigation here of a three-dimensional array of jets of fluid (air guns) and their interference is motivated by applications to the food sorting industry especially. Three-dimensional motion without symmetry is addressed for arbitrary jet cross-sections and incident velocity profiles. Asymptotic analysis based on the comparatively long axial length scale of the configuration leads to a reduced longitudinal vortex system providing a slender flow model for the complete array response. Analytical and numerical studies, along with comparisons and asymptotic limits or checks, are presented for various cross-sectional shapes of nozzle and velocity inputs. The influences of swirl and of unsteady jets are examined. Substantial cross-flows are found to occur due to the interference. The flow solution is non-periodic in the cross-plane even if the nozzle array itself is periodic. The analysis shows that in general the bulk of the three-dimensional motion can be described simply in a cross-plane problem but the induced flow in the cross-plane is sensitively controlled by edge effects and incident conditions, a feature which applies to any of the array configurations examined. Interference readily alters the cross-flow direction and misdirects the jets. Design considerations centre on target positioning and jet swirling.


Author(s):  
Dirk König ◽  
Sean C. Smith

Semiconductor nanowires (NWires) experience stress and charge transfer from their environment and impurity atoms. In response, the environment of a NWire experiences a NWire stress response which may lead to propagated strain and a change in the shape and size of the NWire cross section. Here, geometric number series are deduced for zincblende- (zb-) and diamond-structured NWires of diameter d Wire to obtain the numbers of NWire atoms N Wire(d Wire[i]), bonds between NWire atoms N bnd(d Wire[i]) and interface bonds N IF(d Wire[i]) for six high-symmetry zb NWires with the low-index faceting that occurs frequently in both bottom-up and top-down approaches of NWire processing. Along with these primary parameters, the specific lengths of interface facets, the cross-sectional widths and heights and the cross-sectional areas are presented. The fundamental insights into NWire structures revealed here offer a universal gauge and thus could enable major advancements in data interpretation and understanding of all zb- and diamond-structure-based NWires. This statement is underpinned with results from the literature on cross-section images from III–V core–shell NWire growth and on Si NWires undergoing self-limiting oxidation and etching. The massive breakdown of impurity doping due to self-purification is shown to occur for both Si NWires and Si nanocrystals (NCs) for a ratio of N bnd/N Wire = N bnd/N NC = 1.94 ± 0.01 using published experimental data.


Author(s):  
Zhixun Yang ◽  
Xu Yin ◽  
Dongyan Shi ◽  
Jun Yan ◽  
Lifu Wang ◽  
...  

Abstract Umbilical is a critical equipment in subsea production system for extracting offshore hydrocarbon resources, providing electrical and hydraulic power, control signal transmission and chemical injection. A diversity of components such as electrical cables, optical cables, steel tubes and filler bodies compose the cross-section of an umbilical. Different components perform different physical properties, so different cross-sections will present different geometrical characteristic, carrying capacities, thermal distribution, the cost and the ease of manufacture. Therefore, the cross-sectional design of the umbilical is a typical multi-objective optimization problem. The methodology of pseudo mechanical mechanism is introduced in this paper. Pseudo forces are assumed based on geometrical characteristics, carrying capacities and thermal productivities of different electrical cables, optical cables, steel tube and filler bodies. Each component is analogized to a sphere with different diameters on a funnel surface. Moreover, potential energy and interaction force between different components are defined to avoid the overlap and congestion. Then, the pseudo mechanical model is established and mathematics description is presented corresponding to the cross-section of an umbilical. Iteration algorithm procedure is given to solve this problem. Finally, a case of an umbilical is studied and the optimal cross-section is obtained, which is compared with the result used in practical engineering. It is shown that the methodology of the pseudo mechanical mechanism is effective to obtain the optimal design of cross-section of an umbilical.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Steve Wolff-Vorbeck ◽  
Max Langer ◽  
Olga Speck ◽  
Thomas Speck ◽  
Patrick Dondl

AbstractMechanical optimisation plays a key role in living beings either as an immediate response of individuals or as an evolutionary adaptation of populations to changing environmental conditions. Since biological structures are the result of multifunctional evolutionary constraints, the dimensionless twist-to-bend ratio is particularly meaningful because it provides information about the ratio of flexural rigidity to torsional rigidity determined by both material properties (bending and shear modulus) and morphometric parameters (axial and polar second moment of area). The determination of the mutual contributions of material properties and structural arrangements (geometry) or their ontogenetic alteration to the overall mechanical functionality of biological structures is difficult. Numerical methods in the form of gradient flows of phase field functionals offer a means of addressing this question and of analysing the influence of the cross-sectional shape of the main load-bearing structures on the mechanical functionality. Three phase field simulations were carried out showing good agreement with the cross-sections found in selected plants: (i) U-shaped cross-sections comparable with those of Musa sp. petioles, (ii) star-shaped cross-sections with deep grooves as can be found in the lianoid wood of Condylocarpon guianense stems, and (iii) flat elliptic cross-sections with one deep groove comparable with the cross-sections of the climbing ribbon-shaped stems of Bauhinia guianensis.


Sign in / Sign up

Export Citation Format

Share Document