scholarly journals Study of Laminar Naturel Convection in Partially Porous Cavity in the Presence of Nanofluids

Author(s):  
Mohammed Douha ◽  
Draoui Belkacem ◽  
Kaid Noureddine ◽  
Ameur Houari ◽  
Belkacem Abdellah ◽  
...  

The objective of this work is the mathematical modelling and the numerical simulation of the stationary, laminar, and natural convection, in a confined square cavity (H = L) filled with two fluids (a mixture of nanoparticles of aluminum oxide and Al2O3 water) in one partition and pure water in the other partition. A porous conductive wall of thickness w (w = L/e) and thermal conductivity Keff constitutes the exchange surface between these two partitions. The fluid movement is modeled by the Navier-Stokes equations in the two partitions, while the porous medium is modelled by the Darcy–Brinkman equation. Comsol Multiphysics software is used to solve the system of differential equations that is based on the finite element method. The results are discussed with particular attention to the mean and local Nusselt number (Nu), streamlines and isotherms. A parametric study for Rayleigh number Ra (102 to 106), volume fraction j (0% to 10%), and Darcy number Da (10-7 to 10-2) is performed. The obtained findings show that the increase in Ra, Da, and j intensifies the flow and improves the thermal exchange on the cold wall. For Da £ 10-5, Nu remains practically low and the natural convection is being dominated by conduction. For Da > 10-5, an increase in Nu is observed and the flows tend towards a purely convective situation. Furthermore, an increase in the heat transfer coefficients is observed with the raise of the porous layer permeability, volume fraction and Rayleigh number.

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6952
Author(s):  
Noura Alsedais

The influences of superellipse shapes on natural convection in a horizontally subdivided non-Darcy porous cavity populated by Cu-water nanofluid are inspected in this paper. The impacts of the inner geometries (n = 0.5,1,1.5,4) Rayleigh number (103 ≤ Ra ≤ 106), Darcy number (10−5 ≤ Da ≤ 10−2), porosity (0.2 ≤ ϵ ≤ 0.8), and solid volume fraction (0.01 ≤ ∅ ≤ 0.05) on nanofluid heat transport and streamlines were examined. The hot superellipse shapes were placed in the cavity’s bottom and top, while the adiabatic boundaries on the flat walls of the cavity were considered. The governing equations were numerically solved using the finite volume method (FVM). It was found that the movement of the nanofluid upsurged as Ra boosted. The temperature distributions in the cavity’s core had an inverse relationship with increasing Rayleigh number. An extra porous resistance at lower Darcy numbers limited the nanofluid’s movement within the porous layers. The mean Nusselt number decreased as the porous resistance increased (Da ≤ 10−4). The flow and temperature were strongly affected as the shape of the inner superellipse grew larger.


2019 ◽  
Vol 30 (01) ◽  
pp. 1950006 ◽  
Author(s):  
Abdellaziz Yahiaoui ◽  
Mahfoud Djezzar ◽  
Hassane Naji

This paper performs a numerical analysis of the natural convection within two-dimensional enclosures (square enclosure and enclosures with curved walls) full of a H2O-Cu nanofluid. While their vertical walls are isothermal with a cold temperature [Formula: see text], the horizontal top wall is adiabatic and the bottom wall is kept at a sinusoidal hot temperature. The working fluid is assumed to be Newtonian and incompressible. Three values of the Rayleigh number were considered, viz., 103, 104, 105, the Prandtl number is fixed at 6.2, and the volume fraction [Formula: see text] is taken equal to 0% (pure water), 10% and 20%. The numerical simulation is achieved using a 2D-in-house CFD code based on the governing equations formulated in bipolar coordinates and translated algebraically via the finite volume method. Numerical results are presented in terms of streamlines, isotherms and local and average Nusselt numbers. These show that the heat transfer rate increases with both the volume fraction and the Rayleigh number, and that the average number of Nusselt characterizing the heat transfer raises with the nanoparticles volume fraction.


2021 ◽  
Vol 8 (1) ◽  
pp. 149-157
Author(s):  
Jino Lawrence ◽  
Vanav Kumar Alagarsamy

A linear increase in thermal boundaries towards the bottom of the porous cavity is considered for numerical flow analysis on MHD natural convection. The two-dimensional square shaped cavity is filled with the Cu-water nanofluid. The dimensionless equations are considered to interpret the fluid and heat flow inside the cavity with respect to the desired boundaries. The governing equations are solved using the finite difference techniques. The relevant dimensionless parameters used in the present study are Rayleigh number, Darcy number, solid volume fraction of the nanoparticles and Hartmann number to obtain the flow fields. Heatline flows picturization techniques involved in the study analyze the heat flow inside the cavity. As the Rayleigh number and Darcy number increases, an increase in streamlines flow velocity and convection heat transfer is observed. Convective heat transfer is interrupted by increasing the applied magnetic field effects. An improvement in the heat transfer is noticed by increasing the solid volume fraction of the particles.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Arunn Narasimhan ◽  
B. V. K. Reddy

Bidisperse porous medium (BDPM) consists of a macroporous medium whose solid phase is replaced with a microporous medium. This study investigates using numerical simulations, steady natural convection inside a square BDPM enclosure made from uniformly spaced, disconnected square porous blocks that form the microporous medium. The side walls are subjected to differential heating, while the top and bottom ones are kept adiabatic. The bidispersion effect is generated by varying the number of blocks (N2), macropore volume fraction (ϕE), and internal Darcy number (DaI) for several enclosure Rayleigh numbers (Ra). Their effect on the BDPM heat transfer (Nu) is investigated. When Ra is fixed, the Nu increases with an increase in both DaI and DaE. At low Ra values, Nu is strongly affected by both DaI and ϕE. When N2 is fixed, at high Ra values, the porous blocks in the core region have negligible effect on the Nu. A correlation is proposed to evaluate the heat transfer from the BDPM enclosure, Nu, as a function of Raϕ, DaE, DaI, and N2. It predicts the numerical results of Nu within ±15% and ±9% in two successive ranges of modified Rayleigh number, RaϕDaE.


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


Entropy ◽  
2020 ◽  
Vol 22 (3) ◽  
pp. 363 ◽  
Author(s):  
Jong Hwi Lee ◽  
Jong-Hyeon Shin ◽  
Se-Myong Chang ◽  
Taegee Min

In this research, unsteady three-dimensional incompressible Navier–Stokes equations are solved to simulate experiments with the Boussinesq approximation and validate the proposed numerical model for the design of a circular fin-tube heat exchanger. Unsteady time marching is proposed for a time sweeping analysis of various Rayleigh numbers. The accuracy of the natural convection data of a single horizontal circular tube with the proposed numerical method can be guaranteed when the Rayleigh number based on the tube diameter exceeds 400, which is regarded as the limitation of numerical errors due to instability. Moreover, the effective limit for a circular fin-tube heat exchanger is reached when the Rayleigh number based on the fin gap size ( Ra s ) is equal to or exceeds 100. This is because at low Rayleigh numbers, the air gap between the fins is isolated and rarely affected by natural convection of the outer air, where the fluid provides heat resistance. Thus, the fin acts favorably when Ra s exceeds 100.


2015 ◽  
Vol 19 (5) ◽  
pp. 1621-1632 ◽  
Author(s):  
Mahmoud Salari ◽  
Ali Mohammadtabar ◽  
Mohammad Mohammadtabar

In this paper, entropy generation induced by natural convection of cu-water nanofluid in rectangular cavities with different circular corners and different aspect-ratios were numerically investigated. The governing equations were solved using a finite volume approach and the SIMPLE algorithm was used to couple the pressure and velocity fields. The results showed that the total entropy generation increased with the increase of Rayleigh number, irreversibility coefficient, aspect ratio or solid volume fraction while it decreased with the increase of the corner radius. It should be noted that the best way for minimizing entropy generation is decreasing Rayleigh number. This is the first priority for minimizing entropy generation. The other parameters such as radius, volume fraction, etc are placed on the second priority. However, Bejan number had an inverse trend compared with total entropy generation. As an exception, Bejan number and total entropy number had the same trend whenever solid volume fraction increased. Moreover, Nusselt number increased as Rayleigh number, solid volume fraction or aspect ratio increased whereas it decreases with the increase of corner radius.


2018 ◽  
Vol 240 ◽  
pp. 01006 ◽  
Author(s):  
Nadezhda Bondareva ◽  
Mikhail Sheremet

Present study is devoted to numerical simulation of heat and mass transfer inside a cooper profile filled with paraffin enhanced with Al2O3 nanoparticles. This profile is heated by the heat-generating element of constant volumetric heat flux. Two-dimensional approximation of melting process is described by the Navier-Stokes equations in non-dimensional variables such as stream function, vorticity and temperature. The enthalpy formulation has been used for description of the heat transfer. The influence of volume fraction of nanoparticles and intensity of heat generation on melting process and natural convection in liquid phase has been studied.


2020 ◽  
Vol 30 (10) ◽  
pp. 4629-4648
Author(s):  
Zehba A.S. Raizah

Purpose The purpose of this study is to apply the incompressible smoothed particle hydrodynamics method for simulating the natural convection flow inside a cavity including cross blades or circular cylinder cylinder. Design/methodology/approach The base fluid is water and copper-water nanofluid is treated as a working fluid. The left and rights walls are maintained at a cool temperature, the horizontal cavity walls are isolated and the inner shape was heated. The physical parameters are the length of the blades L_Blade, the number of cross blades, circular cylinder radius L_R, Rayleigh number Ra and the nanoparticles volume fraction. Findings The results reveal that the lengths of the cross blade, number of the blades and radius of the circular cylinder is working as an enhancement factor for heat transfer and fluid flows inside a cavity. Adding nanoparticles augments heat transfer and reduces the fluid flow intensity inside a cavity. The best case for buoyancy-driven flow was obtained when the inner shape is the circular cylinder at a higher Rayleigh number. Originality/value This work uses a distinctive numerical method to study the natural convection heat from cross blades inside a cavity filled with nanofluid. It provides a new analysis of this issue and presented good results.


2017 ◽  
Vol 95 (3) ◽  
pp. 238-252 ◽  
Author(s):  
T. Armaghani ◽  
Muneer A. Ismael ◽  
Ali J. Chamkha

The present numerical study investigates the analysis of thermodynamic irreversibility generation and the natural convection in inclined partially porous layered cavity filled with a Cu–water nanofluid. The finite difference method with up-wind scheme is used to solve the governing equations. The study is achieved by examining the effects of nanoparticle volume fraction, inclination angle, and the porous layer thickness. Besides, the computations are achieved within the laminar range of the Rayleigh number. The results show that at Ra = 104, a reduction of total entropy generation is recorded with increasing nanoparticle volume fraction when the porous layer thickness is greater than 0.2. Moreover, when Ra is less than 105, the nanoparticle volume fraction increases the heat transfer irreversibility, and improves the overall thermal performance. It is found also that for a low Rayleigh number, the largest porous layer thickness and the highest cavity orientation improve the thermal performance. On the contrary, at high Rayleigh numbers, these parameter ranges give the worst thermal performance.


Sign in / Sign up

Export Citation Format

Share Document