scholarly journals Natural Convection over Two Superellipse Shapes with a Porous Cavity Populated by Nanofluid

Energies ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6952
Author(s):  
Noura Alsedais

The influences of superellipse shapes on natural convection in a horizontally subdivided non-Darcy porous cavity populated by Cu-water nanofluid are inspected in this paper. The impacts of the inner geometries (n = 0.5,1,1.5,4) Rayleigh number (103 ≤ Ra ≤ 106), Darcy number (10−5 ≤ Da ≤ 10−2), porosity (0.2 ≤ ϵ ≤ 0.8), and solid volume fraction (0.01 ≤ ∅ ≤ 0.05) on nanofluid heat transport and streamlines were examined. The hot superellipse shapes were placed in the cavity’s bottom and top, while the adiabatic boundaries on the flat walls of the cavity were considered. The governing equations were numerically solved using the finite volume method (FVM). It was found that the movement of the nanofluid upsurged as Ra boosted. The temperature distributions in the cavity’s core had an inverse relationship with increasing Rayleigh number. An extra porous resistance at lower Darcy numbers limited the nanofluid’s movement within the porous layers. The mean Nusselt number decreased as the porous resistance increased (Da ≤ 10−4). The flow and temperature were strongly affected as the shape of the inner superellipse grew larger.

2021 ◽  
Vol 8 (1) ◽  
pp. 149-157
Author(s):  
Jino Lawrence ◽  
Vanav Kumar Alagarsamy

A linear increase in thermal boundaries towards the bottom of the porous cavity is considered for numerical flow analysis on MHD natural convection. The two-dimensional square shaped cavity is filled with the Cu-water nanofluid. The dimensionless equations are considered to interpret the fluid and heat flow inside the cavity with respect to the desired boundaries. The governing equations are solved using the finite difference techniques. The relevant dimensionless parameters used in the present study are Rayleigh number, Darcy number, solid volume fraction of the nanoparticles and Hartmann number to obtain the flow fields. Heatline flows picturization techniques involved in the study analyze the heat flow inside the cavity. As the Rayleigh number and Darcy number increases, an increase in streamlines flow velocity and convection heat transfer is observed. Convective heat transfer is interrupted by increasing the applied magnetic field effects. An improvement in the heat transfer is noticed by increasing the solid volume fraction of the particles.


Author(s):  
Didarul Ahasan Redwan ◽  
Md. Habibur Rahman ◽  
Hasib Ahmed Prince ◽  
Emdadul Haque Chowdhury ◽  
M. Ruhul Amin

Abstract A numerical study on natural convection heat transfer in a right triangular solar collector filled with CNT-water and Cuwater nanofluids has been conducted. The inclined wall and the bottom wall of the cavity are maintained at a relatively lower temperature (Tc), and higher temperature (Th), respectively, whereas the vertical wall, is kept adiabatic. The governing non-dimensional partial differential equations are solved by using the Galerkin weighted residual finite element method. The Rayleigh number (Ra) and the solid volume-fraction of nanoparticles (ϕ) are varied in the range of 103 ≤ Ra ≤ 106, and 0 ≤ ϕ ≤ 0.1, respectively, to carry out the parametric simulations within the laminar region. Corresponding thermal and flow fields are presented via isotherms and streamlines. Variations of average Nusselt number as a function of Rayleigh number have been examined for different solid volume-fraction of nanoparticles. It has been found that the natural convection heat transfer becomes stronger with the increment of solid volume fraction and Rayleigh number, but the strength of circulation reduces with increasing nanoparticles’ concentration at low Ra. Conduction mode dominates for lower Ra up to a certain limit of 104. It is also observed that when the solid volume fraction is increased from 0 to 0.1 for a particular Rayleigh number, the average Nusselt number is increased to a great extent, but surprisingly, the rate of increment is more pronounced at lower Ra. Moreover, it is seen that Cu-water nanofluid offers slightly better performance compared to CNT-water but the difference is very little, especially at lower Ra.


Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1150 ◽  
Author(s):  
Taher Armaghani ◽  
Muneer Ismael ◽  
Ali Chamkha ◽  
Ioan Pop

This paper investigates the mixed convection and entropy generation of an Ag-water nanofluid in an L-shaped channel fixed at an inclination angle of 30° to the horizontal axis. An isothermal heat source was positioned in the middle of the right inclined wall of the channel while the other walls were kept adiabatic. The finite volume method was used for solving the problem’s governing equations. The numerical results were obtained for a range of pertinent parameters: Reynolds number, Richardson number, aspect ratio, and the nanoparticles volume fraction. These results were Re = 50–200; Ri = 0.1, 1, 10; AR = 0.5–0.8; and φ = 0.0–0.06, respectively. The results showed that both the Reynolds and the Richardson numbers enhanced the mean Nusselt number and minimized the rate of entropy generation. It was also found that when AR. increased, the mean Nusselt number was enhanced, and the rate of entropy generation decreased. The nanoparticles volume fraction was predicted to contribute to increasing both the mean Nusselt number and the rate of entropy generation.


2015 ◽  
Vol 19 (5) ◽  
pp. 1621-1632 ◽  
Author(s):  
Mahmoud Salari ◽  
Ali Mohammadtabar ◽  
Mohammad Mohammadtabar

In this paper, entropy generation induced by natural convection of cu-water nanofluid in rectangular cavities with different circular corners and different aspect-ratios were numerically investigated. The governing equations were solved using a finite volume approach and the SIMPLE algorithm was used to couple the pressure and velocity fields. The results showed that the total entropy generation increased with the increase of Rayleigh number, irreversibility coefficient, aspect ratio or solid volume fraction while it decreased with the increase of the corner radius. It should be noted that the best way for minimizing entropy generation is decreasing Rayleigh number. This is the first priority for minimizing entropy generation. The other parameters such as radius, volume fraction, etc are placed on the second priority. However, Bejan number had an inverse trend compared with total entropy generation. As an exception, Bejan number and total entropy number had the same trend whenever solid volume fraction increased. Moreover, Nusselt number increased as Rayleigh number, solid volume fraction or aspect ratio increased whereas it decreases with the increase of corner radius.


2017 ◽  
Vol 21 (3) ◽  
pp. 1275-1286 ◽  
Author(s):  
Keivan Fallah ◽  
Atena Ghaderi ◽  
Nima Sedaghatizadeh ◽  
Mohammad Borghei

In the present study, natural convection of nanofluids in a concentric horizontal annulus enclosure has been numerically simulated using the lattice Boltzmann method. A water-based nanofluid containing Al2O3 nanoparticle has been studied. Simulations have been carried while the Rayleigh number ranges from 103 to 105 and solid volume fraction varies between 0 and 0.04. The effects of solid volume fraction of nanofluids on hydrodynamic and thermal characteristics such as average and local Nusselt numbers, streamlines, and isotherm patterns for different values of solid volume fraction, annulus gap width ratio and Rayleigh number are investigated and discussed in detail.


2012 ◽  
Vol 16 (5) ◽  
pp. 1317-1323 ◽  
Author(s):  
Ching-Chang Cho ◽  
Her-Terng Yau ◽  
Cha’o-Kuang Chen

This paper investigates the natural convection heat transfer enhancement of Al2O3-water nanofluid in a U-shaped cavity. In performing the analysis, the governing equations are modeled using the Boussinesq approximation and are solved numerically using the finite-volume numerical method. The study examines the effects of the nanoparticle volume fraction, the Rayleigh number and the geometry parameters on the mean Nusselt number. The results show that for all values of the Rayleigh number, the mean Nusselt number increases as the volume fraction of nanoparticles increases. In addition, it is shown that for a given length of the heated wall, extending the length of the cooled wall can improve the heat transfer performance.


2006 ◽  
Vol 128 (7) ◽  
pp. 717-725 ◽  
Author(s):  
Amaresh Dalal ◽  
Manab Kumar Das

In this paper, natural convection inside a two-dimensional cavity with a wavy right vertical wall has been carried out. The bottom wall is heated by a spatially varying temperature and other three walls are kept at constant lower temperature. The integral forms of the governing equations are solved numerically using finite-volume method in the non-orthogonal body-fitted coordinate system. The semi-implicit method for pressure linked equation algorithm with higher-order upwinding scheme are used. The streamlines and isothermal lines are presented for three different undulations (1, 2 and 3) with different Rayleigh number and a fluid having Prandtl number 0.71. Results are presented in the form of local and average Nusselt number distribution for a selected range of Rayleigh number (100-106).


2021 ◽  
Vol 11 (4) ◽  
pp. 1722
Author(s):  
Nidal Abu-Libdeh ◽  
Fares Redouane ◽  
Abderrahmane Aissa ◽  
Fateh Mebarek-Oudina ◽  
Ahmad Almuhtady ◽  
...  

In this study, a new cavity form filled under a constant magnetic field by Ag/MgO/H2O nanofluids and porous media consistent with natural convection and total entropy is examined. The nanofluid flow is considered to be laminar and incompressible, while the advection inertia effect in the porous layer is taken into account by adopting the Darcy–Forchheimer model. The problem is explained in the dimensionless form of the governing equations and solved by the finite element method. The results of the values of Darcy (Da), Hartmann (Ha) and Rayleigh (Ra) numbers, porosity (εp), and the properties of solid volume fraction (ϕ) and flow fields were studied. The findings show that with each improvement in the Ha number, the heat transfer rate becomes more limited, and thus the magnetic field can be used as an outstanding heat transfer controller.


2012 ◽  
Vol 16 (2) ◽  
pp. 489-501 ◽  
Author(s):  
Ehsan Sourtiji ◽  
Seyed Hosseinizadeh

A numerical study of natural convection heat transfer through an alumina-water nanofluid inside L-shaped cavities in the presence of an external magnetic field is performed. The study has been carried out for a wide range of important parame?ters such as Rayleigh number, Hartmann number, aspect ratio of the cavity and solid volume fraction of the nanofluid. The influence of the nanoparticle, buoyancy force and the magnetic field on the flow and temperature fields have been plotted and discussed. The results show that after a critical Rayleigh number depending on the aspect ratio, the heat transfer in the cavity rises abruptly due to some significant changes in flow field. It is also found that the heat transfer enhances in the presence of the nanoparticles and increases with solid volume fraction of the nanofluid. In addition, the performance of the nanofluid utilization is more effective at high Ray?leigh numbers. The influence of the magnetic field has been also studied and de?duced that it has a remarkable effect on the heat transfer and flow field in the cavity that as the Hartmann number increases the overall Nusselt number is significantly decreased specially at high Rayleigh numbers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Wael Al-Kouz ◽  
Abderrahmane Aissa ◽  
Aimad Koulali ◽  
Wasim Jamshed ◽  
Hazim Moria ◽  
...  

AbstractMHD nanoliquid convective flow in an odd-shaped cavity filled with a multi-walled carbon nanotube-iron (II, III) oxide (MWCNT-Fe3O4) hybrid nanofluid is reported. The side walls are adiabatic, and the internal and external borders of the cavity are isothermally kept at high and low temperatures of Th and Tc, respectively. The governing equations obtained with the Boussinesq approximation are solved using Galerkin Finite Element Method (GFEM). Impact of Darcy number (Da), Hartmann number (Ha), Rayleigh number (Ra), solid volume fraction (ϕ), and Heated-wall length effect are presented. Outputs are illustrated in forms of streamlines, isotherms, and Nusselt number. The impact of multiple parameters namely Rayleigh number, Darcy number, on entropy generation rate was analyzed and discussed in post-processing under laminar and turbulent flow regimes.


Sign in / Sign up

Export Citation Format

Share Document