scholarly journals Influence of Boundary Roughness on Magnetohydrodynamic Kelvin-Helmholtz Instability in Couple-stress Fluid

Author(s):  
Priya M. Gouder ◽  
Praveen I. Chandaragi ◽  
Krishna B. Chavaraddi ◽  
G. B. Marali

The Kelvin-Helmholtz instability (KHI) occurs at the interface amongst two fluids, which are in relative motion with a common boundary. The growth rate of waves occurs whenever the relative velocity is greater as compared with the critical relative velocity. In the present paper, the influence of boundary roughness on KHI under the impact magnetic field in a couple-stress fluid layer bounded by a rigid surface at the lower side and upper side by a fluid saturated porous layer. Using suitable surface and boundary conditions, we have derived the dispersion relation and results are depicted graphically. As observed in presence of sharp interface, magnetic field exhibits stabilizing effect however, destabilizing effect is shown by the buoyancy force on KHI. Also, noted that the growth rate of interface reduces, as there is a rise in roughness parameter value.

2021 ◽  
Vol 26 (2) ◽  
pp. 107-127
Author(s):  
C.R. Makhalemele ◽  
L. Rundora ◽  
S.O. Adesanya

Abstract This article addresses the impact of magnetic field induction on the buoyancy-induced oscillatory flow of couple stress fluid with varying heating. Modelled equations for the incompressible fluid are coupled and nonlinear due to the inclusion of viscous heating and thermal effect on the fluid density. Approximate solutions are constructed and coded on a symbolic package to ease the computational complexity. Graphical representations of the symbolic solutions are presented with detailed explanations. Results of the present computation show that the effect of induced magnetic field on the oscillatory flow and heat transfer is significant and cannot be neglected.


1998 ◽  
Vol 59 (2) ◽  
pp. 193-209
Author(s):  
L. A. DÁVALOS-OROZCO

The author's previous work on the Rayleigh–Taylor instability is extended to the Kelvin–Helmholtz instability, and the maximum growth rate of a perturbation and an estimate of its upper bound is obtained for an infinite fluid layer under horizontal rotation where the density, horizontal velocity (shear) and magnetic field are continuously stratified in the direction of gravity. Conclusions are drawn about the possibility of stability for some directions of propagation of the perturbation, even in the case of unstably stratified density. It is also shown that the new terms that appear owing to the interaction of the horizontal shear flow, horizontal rotation and stratified magnetic field increase the range of values that contribute to the estimate of the maximum growth rate compared with previous work. Furthermore, a generalization of the sufficient condition for stability under horizontal rotation alone obtained by Johnson is calculated in the presence of density stratification. A new method is also given to obtain a sufficient condition for stability when a magnetic field is present in addition to rotation and density stratification.


2021 ◽  
Vol 104 (2) ◽  
pp. 003685042110136
Author(s):  
Safia Akram ◽  
Najma Saleem ◽  
Mir Yasir Umair ◽  
Sufian Munawar

The impact of lateral walls and partial slip with different waveforms on peristaltic pumping of couple stress fluid in a rectangular duct with different waveforms has been discussed in the current article. By means of a wave frame of reference the flow is explored travelling away from a fixed frame with velocity c. Peristaltic waves generated on horizontal surface walls of rectangular duct are considered using lubrication technique. Mathematical modelling of couple fluid for three-dimensional flow are first discussed in detail. Lubrication approaches are used to simplify the proposed problem. Exact solutions of pressure gradient, pressure rise, velocity and stream function have been calculated. Numerical and graphical descriptions are displayed to look at the behaviour of diverse emerging parameters.


2016 ◽  
Vol 38 (1) ◽  
pp. 55-63
Author(s):  
Chander Bhan Mehta

Abstract The study is aimed at analysing thermal convection in a compressible couple stress fluid in a porous medium in the presence of rotation and magnetic field. After linearizing the relevant equations, the perturbation equations are analysed in terms of normal modes. A dispersion relation governing the effects of rotation, magnetic field, couple stress parameter and medium permeability have been examined. For a stationary convection, the rotation postpones the onset of convection in a couple stress fluid heated from below in a porous medium in the presence of a magnetic field. Whereas, the magnetic field and couple stress postpones and hastens the onset of convection in the presence of rotation and the medium permeability hastens and postpones the onset of convection with conditions on Taylor number. Further the oscillatory modes are introduced due to the presence of rotation and the magnetic field which were non-existent in their absence, and hence the principle of exchange stands valid. The sufficient conditions for nonexistence of over stability are also obtained.


2013 ◽  
Vol 31 (9) ◽  
pp. 1535-1541 ◽  
Author(s):  
K.-I. Nishikawa ◽  
P. Hardee ◽  
B. Zhang ◽  
I. Duţan ◽  
M. Medvedev ◽  
...  

Abstract. We have investigated the generation of magnetic fields associated with velocity shear between an unmagnetized relativistic jet and an unmagnetized sheath plasma. We have examined the strong magnetic fields generated by kinetic shear (Kelvin–Helmholtz) instabilities. Compared to the previous studies using counter-streaming performed by Alves et al. (2012), the structure of the kinetic Kelvin–Helmholtz instability (KKHI) of our jet-sheath configuration is slightly different, even for the global evolution of the strong transverse magnetic field. In our simulations the major components of growing modes are the electric field Ez, perpendicular to the flow boundary, and the magnetic field By, transverse to the flow direction. After the By component is excited, an induced electric field Ex, parallel to the flow direction, becomes significant. However, other field components remain small. We find that the structure and growth rate of KKHI with mass ratios mi/me = 1836 and mi/me = 20 are similar. In our simulations saturation in the nonlinear stage is not as clear as in counter-streaming cases. The growth rate for a mildly-relativistic jet case (γj = 1.5) is larger than for a relativistic jet case (γj = 15).


Sign in / Sign up

Export Citation Format

Share Document