Reliability Evaluation Through Moisture Sorption Characterization of Electronic Packaging Materials

2013 ◽  
Vol 37 (9) ◽  
pp. 1151-1158
Author(s):  
Heejin Park
1997 ◽  
Vol 119 (4) ◽  
pp. 294-300 ◽  
Author(s):  
C. S. Desai ◽  
J. Chia ◽  
T. Kundu ◽  
J. L. Prince

The disturbed state concept (DSC) presented here provides a unified and versatile methodology for constitutive modeling of thermomechanical response of materials and interfaces/joints in electronic chip-substrate systems. It allows for inclusion of such important features as elastic, plastic and creep strains, microcracking and degradation, strengthening, and fatigue failure. It provides the flexibility to adopt different hierarchical versions in the range of simple (e.g., elastic) to sophisticated (thermoviscoplastic with microcracking and damage), depending on the user’s specific need. This paper presents the basic theory and procedures for finding parameters in the model based on laboratory test data and their values for typical solder materials. Validation of the models with respect to laboratory test behavior and different criteria for the identification of cyclic fatigue and failure, including a new criterion based on the DSC and design applications, are presented in the compendium paper (Part II, Desai et al., 1997). Based on these results, the DSC shows excellent potential for unified characterization of the stress-strain-strength and failure behavior of engineering materials in electronic packaging problems.


2010 ◽  
Vol 123-125 ◽  
pp. 351-354 ◽  
Author(s):  
Fahmida Parvin ◽  
Md. Arifur Rahman ◽  
Jahid M.M. Islam ◽  
Mubarak A. Khan ◽  
A.H.M. Saadat

Polymer films of rice starch/Polyvinyl alcohol (PVA) were prepared by casting method. Different blends were made varying the concentration of rice starch and PVA. Tensile strength (TS) and elongation at break (Eb) of the prepared films were studied. Films made up of rice starch and PVA with a ratio of 2:8 showed highest TS. 10% sugar was added with highest TS giving four composition of Starch/PVA blend in order to increase TS and Eb. Films made up of rice starch and PVA and sugar with a ratio of 1:8:1 showed highest TS and Eb and the recorded value was 14.96MPa and 637% respectively. The physico-mechanical properties of the prepared sugar incorporated films were improved by grafting with acrylic monomer with the aid of UV radiation. A formulation was prepared with monomer, methylmethacrylat in methanol, and a photo initiator. The highest TS of the grafted films were recorded and the value was 16.38 MPa. The water uptake and weight loss in both soil and water of the grafted films are lower than the non-grafted films. The prepared films were further characterized with stereo micrograph and XRD. Finally, the produced film can be used as biodegradable packaging materials for shopping and garbage bags that are very popular and environment friendly.


2011 ◽  
Vol 284-286 ◽  
pp. 620-623
Author(s):  
Ming Hu ◽  
Jing Gao ◽  
Yun Long Zhang

The SiC/Cu electronic packaging composites with excellent performance were successfully prepared by the chemical plating copper on the surface of SiC powders and high-speed flame spraying technology. The results showed that the homogeneous dense coated layers can be obtained on the surface of SiC powder by optimizing process parameters. The volume fraction of SiC powders in the composites could significantly increase and figure was beyond 55vol% after spraying Copper. The SiC and Cu were the main phases in the spraying SiC/Cu electronic packaging composite, at the same time Cu2O can be tested as the trace phase. The interface combination properties of SiC/Cu in the hot-pressed samples can obviously improve. The thermal expansion coefficient and thermal conductivity of SiC/Cu electronic packaging composite basic can satisfy the requirements for electronic packaging materials.


Sign in / Sign up

Export Citation Format

Share Document