scholarly journals Energy consumption of emulsification processes in small-sized mix apparatuses

2020 ◽  
Vol 61 (1) ◽  
pp. 86-90
Author(s):  
Nikolay S. Shulaev ◽  
◽  
Tatiana V. Shulaeva ◽  
Sergey V. Laponov ◽  
◽  
...  

There is given in this thesis a general method of calculation of power consumption for emulgation in systems liquid-liquid in small-size mixing devices (rotor-pulsation apparatuses and rotor-disc mixers). This mixing devices, have shown a high efficiency at processing of liquid-liquid systems and are wide using chemical processes. The base of calculation method is an energy ratio to describe of developed turbulent motion, pulsation intensity of which is enough for create of dispersed particles of given size and concentration, which provide a necessary surface of phases contact. It is shown, that in determination of energy consumption it is need to take in account energy dissipation processes, due to viscous friction forces, which have a significant influence at high gradients of turbulent motion. There is obtained a ratio, which connects an angular velocity of rotor rotation of mixing device and a characterized size of dispersed phase particles.There is given an experimental dependencies of consumed power of rotor-disc mixers on rotor rotations number of mixing device and characterized sizes of dispersed particles for systems water-diesel fuel. It was determined, that are decreasing of dispersed particles sizes and in increasing of volumetric flow of processing mixture a value of consumed power increases, and it is related with by increase of energy consumption for creating of interphase surface. It was determined, that a power, consumed by rotor-disc mixer, for emulsion making with averaged dispersion size of particles at range 5-25 mkm, increases by increase of rotation numbers ~n0.37. Comparison of theoretical equations and experimental data have shown adequacy of supposed calculation method of energy consumption.

1987 ◽  
Vol 19 (3-4) ◽  
pp. 391-400 ◽  
Author(s):  
Zhou Ding ◽  
Cai Wei Min ◽  
Wang Qun Hui

This paper studies the use of bipolar-particles-electrodes in the decolorization of dyeing effluents. Treatment of highly colored solutions of various soluble dyes (such as direct, reactive, cationic or acid dyes) and also samples of dyeing effluents gave rise to an almost colorless transparent liquid, with removal of CODcr and BOD5 being as high as over 80%. The method is characterized by its high efficiency, low energy consumption and long performance life. A discussion of the underlying principle is given.


2018 ◽  
Vol 768 ◽  
pp. 293-305 ◽  
Author(s):  
Chun Zhi Zhao ◽  
Yi Liu ◽  
Shi Wei Ren ◽  
Jiang Quan

along with the rapid development of commercial concrete industry and the continuous growth of concrete demand, the commercial concrete production has brought large energy consumption and mineral resource consumption; cement calcination and direct/indirect energy consumption within the boundary of ready-mixed concrete system have become the main source of concrete greenhouse gas. This paper mainly settles key problems such as boundary definition, data collection, calculation model, data acceptance/rejection and data calculation method concerned with concrete carbon emission calculation, establishes the national uniform concrete carbon emission calculation method and emission factor within the same cultural boundary, and provides theoretical and data calculation basis for determining the reference value and grade of concrete carbon emission. As for other products, the carbon emission of unit product may also be calculated by reference to this paper; therefore, inherent carbon emission data of buildings are accumulated, providing quantized data support for taking measures to reduce the carbon emission intensity.


Author(s):  
Liu Hongzhao ◽  
E. Appleton

Abstract A thorough analysis on the characteristics of a grout delivery mechanism in the lining of shafts has been accomplished. The dynamic equation of this spraying mechanism has been established and can describe the system’s performance properties under different conditions of viscous friction forces. The analysis introduces a combined viscous damping coefficient c* and a ratio λ between viscous friction force and inertia force. It is proved theoretically that the relative velocity of the grout is less than the implicate velocity and the emission angle α described in the paper is always larger than 45 °. Numerical simulations are performed by feeding various different parameters into the model. A full discussion of the effects of different variables is presented. Additionally, a formula for calculating the driving torque and power is developed. These studies provide an understanding of the properties of this mechanism and should prove useful in guiding its design and operation.


2014 ◽  
Vol 60 (2) ◽  
pp. 193-198
Author(s):  
M. Yousefi ◽  
D. Koozehkanani ◽  
H. Jangi ◽  
N. Nasirzadeh ◽  
J. Sobhi

Abstract A 400 MHz high efficiency transmitter for wireless medical application is presented in this paper. Transmitter architecture with high-energy efficiencies is proposed to achieve high data rate with low power consumption. In the on-off keying transmitters, the oscillator and power amplifier are turned off when the transmitter sends 0 data. The proposed class-e power amplifier has high efficiency for low level output power. The proposed on-off keying transmitter consumes 1.52 mw at -5 dBm output by 40 Mbps data rate and energy consumption 38 pJ/bit. The proposed transmitter has been designed in 0.18μm CMOS technology.


2020 ◽  
Vol 55 (5-6) ◽  
pp. 273-281
Author(s):  
S. Surkov

In this article, a theoretical analysis of the flows arising in the cross sections of fluid and gas flows is performed. Such flows are subdivided into secondary flows and coherent structures. From experimental studies it is known that both types of flows are long-lived large-scale movements (LSM) stretched along the flow. The relative stability of the vortices is traditionally explained by the fact that the viscous friction forces that inhibit the rotation are compensated by the intensification of the swirl when moving slowly rotating peripheral layers to the center of the vortex due to longitudinal tension. An analysis of this mechanism made it possible to develop a relatively simple model of vortex structures in which the viscous friction forces and axial expansion are considered to be infinitesimal. Under these assumptions, one can use the equations of motion of an ideal fluid in the variables “stream function - vorticity”. It is shown that under certain assumptions these equations take the form of a wave equation, and the boundary conditions are the condition that the stream function on the solid walls of the flow equals zero. The obtained solutions of the wave equation describe the following special cases: Goertler’s vortices between rotating cylinders, secondary flows in a pipe with a square cross section, swirling flow in a round pipe, paired vortex after bend of the pipe. The physical sense of more complex solutions of the wave equation has become clear relatively recently. Very similar structures were found in experimental studies using orthogonal decomposition (POD) of a turbulent pulsations field. This may mean that the eigenfunctions in the POD correspond to coherent structures that really arise in the flow. The results obtained confirm the hypothesis that secondary flows and coherent structures have a common nature. The solutions obtained in this paper can be used in processing the experiment as eigenfunctions for the orthogonal decomposition method. In addition, they can be used in direct numerical simulation (DNS) of turbulent flows


2008 ◽  
Vol 58 ◽  
pp. 83-89
Author(s):  
Ning Chang Liu ◽  
Zhao Feng Li

In cement industry, many grinding up systems are on operating now. The tradition process of tube mill grinding system is high energy consumption, so it’s low efficiency, especially in the final cement grinding process. The value and advantage of slag is recognized more and more, but it’s difficult to be grinded up. Furthermore, the disadvantage and shortages to grind up clinker compounded with slag to produce cement are obvious and adopted. The best process is to grind up slag, clinker separately. Then, these two kinds of powder are compounded by a mixer. Hereby, it introduces a design of the process to grind up clinker, slag by one roller mill.


Sign in / Sign up

Export Citation Format

Share Document