scholarly journals Structural and Functional Peculiarities of Outer and Central Cell Layers of Yeast Colony

2021 ◽  
Keyword(s):  

.

Author(s):  
C.N. Sun

The present study demonstrates the ultrastructure of the gingival epithelium of the pig tail monkey (Macaca nemestrina). Specimens were taken from lingual and facial gingival surfaces and fixed in Dalton's chrome osmium solution (pH 7.6) for 1 hr, dehydrated, and then embedded in Epon 812.Tonofibrils are variable in number and structure according to the different region or location of the gingival epithelial cells, the main orientation of which is parallel to the long axis of the cells. The cytoplasm of the basal epithelial cells contains a great number of tonofilaments and numerous mitochondria. The basement membrane is 300 to 400 A thick. In the cells of stratum spinosum, the tonofibrils are densely packed and increased in number (fig. 1 and 3). They seem to take on a somewhat concentric arrangement around the nucleus. The filaments may occur scattered as thin fibrils in the cytoplasm or they may be arranged in bundles of different thickness. The filaments have a diameter about 50 A. In the stratum granulosum, the cells gradually become flatted, the tonofibrils are usually thin, and the individual tonofilaments are clearly distinguishable (fig. 2). The mitochondria and endoplasmic reticulum are seldom seen in these superficial cell layers.


Nutrients ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 10
Author(s):  
Suzan M. Hazzaa ◽  
Mabrouk A. Abd Eldaim ◽  
Amira A. Fouda ◽  
Asmaa Shams El Dein Mohamed ◽  
Mohamed Mohamed Soliman ◽  
...  

Intermittent fasting (IF) plays an important role in the protection against metabolic syndrome-induced memory defects. This study aimed to assess the protective effects of both prophylactic and curative IF against high-fat diet (HFD)-induced memory defects in rats. The control group received a normal diet; the second group received a HFD; the third group was fed a HFD for 12 weeks and subjected to IF during the last four weeks (curative IF); the fourth group was fed a HFD and subjected to IF simultaneously (prophylactic IF). A high-fat diet significantly increased body weight, serum lipids levels, malondialdehyde (MDA) concentration, glial fibrillary acidic protein (GFAP) and H score in brain tissue and altered memory performance. In addition, it significantly decreased reduced glutathione (GSH) concentration in brain tissue and viability and thickness of pyramidal and hippocampus granular cell layers. However, both types of IF significantly decreased body weight, serum lipids, GFAP protein expression and H score and MDA concentration in brain tissue, and improved memory performance, while it significantly increased GSH concentration in brain tissue, viability, and thickness of pyramidal and granular cell layers of the hippocampus. This study indicated that IF ameliorated HFD-induced memory disturbance and brain tissue damage and the prophylactic IF was more potent than curative IF.


iScience ◽  
2021 ◽  
Vol 24 (4) ◽  
pp. 102287 ◽  
Author(s):  
Marion C. Bichet ◽  
Wai Hoe Chin ◽  
William Richards ◽  
Yu-Wei Lin ◽  
Laura Avellaneda-Franco ◽  
...  

Animals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 2019
Author(s):  
Salvatore Desantis ◽  
Serena Minervini ◽  
Lorenzo Zallocco ◽  
Bruno Cozzi ◽  
Andrea Pirone

The pig has been increasingly used as a suitable animal model in translational neuroscience. However, several features of the fast-growing, immediately motor-competent cerebral cortex of this species have been adequately described. This study analyzes the cytoarchitecture of the primary motor cortex (M1) of newborn, young and adult pigs (Sus scrofa domesticus). Moreover, we investigated the distribution of the neural cells expressing the calcium-binding proteins (CaBPs) (calretinin, CR; parvalbumin, PV) throughout M1. The primary motor cortex of newborn piglets was characterized by a dense neuronal arrangement that made the discrimination of the cell layers difficult, except for layer one. The absence of a clearly recognizable layer four, typical of the agranular cortex, was noted in young and adult pigs. The morphometric and immunohistochemical analyses revealed age-associated changes characterized by (1) thickness increase and neuronal density (number of cells/mm2 of M1) reduction during the first year of life; (2) morphological changes of CR-immunoreactive neurons in the first months of life; (3) higher density of CR- and PV-immunopositive neurons in newborns when compared to young and adult pigs. Since most of the present findings match with those of the human M1, this study strengthens the growing evidence that the brain of the pig can be used as a potentially valuable translational animal model during growth and development.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Christine Gräfe ◽  
Elena K. Müller ◽  
Lennart Gresing ◽  
Andreas Weidner ◽  
Patricia Radon ◽  
...  

Abstract Magnetic hybrid materials are a promising group of substances. Their interaction with matrices is challenging with regard to the underlying physical and chemical mechanisms. But thinking matrices as biological membranes or even structured cell layers they become interesting with regard to potential biomedical applications. Therefore, we established in vitro blood-organ barrier models to study the interaction and processing of superparamagnetic iron oxide nanoparticles (SPIONs) with these cellular structures in the presence of a magnetic field gradient. A one-cell-type–based blood-brain barrier model was used to investigate the attachment and uptake mechanisms of differentially charged magnetic hybrid materials. Inhibition of clathrin-dependent endocytosis and F-actin depolymerization led to a dramatic reduction of cellular uptake. Furthermore, the subsequent transportation of SPIONs through the barrier and the ability to detect these particles was of interest. Negatively charged SPIONs could be detected behind the barrier as well as in a reporter cell line. These observations could be confirmed with a two-cell-type–based blood-placenta barrier model. While positively charged SPIONs heavily interact with the apical cell layer, neutrally charged SPIONs showed a retarded interaction behavior. Behind the blood-placenta barrier, negatively charged SPIONs could be clearly detected. Finally, the transfer of the in vitro blood-placenta model in a microfluidic biochip allows the integration of shear stress into the system. Even without particle accumulation in a magnetic field gradient, the negatively charged SPIONs were detectable behind the barrier. In conclusion, in vitro blood-organ barrier models allow the broad investigation of magnetic hybrid materials with regard to biocompatibility, cell interaction, and transfer through cell layers on their way to biomedical application.


1994 ◽  
Vol 266 (3) ◽  
pp. F367-F374 ◽  
Author(s):  
R. Rick

The pH of the isolated frog skin epithelium was determined on a cellular and subcellular level based on the distribution of a weak organic acid, 4-bromobenzoic acid. The indicator is detectable by X-ray microanalysis due to the presence of an element label. The results show that the pH of principal cells, but not the Na concentration, is closely correlated with the rate of transepithelial Na transport. Acidification leads to an inhibition of Na transport, regardless of whether the change was spontaneous or experimentally induced. Under the conditions of this study, the pH of principal cells was not well regulated. At a bath pH of 7.0, large pH differences between the cell layers were detectable. In mitochondria-rich cells, the pH was a function of the intracellular Cl concentration but not the Na transport rate. The cytoplasmic pH consistently exceeded the nuclear pH. The nuclear-cytoplasmic pH differential in principal cells amounted to 0.3 pH units, which is equivalent to a nuclear potential of -17 mV. The results support the view that the intracellular pH (pHi) is an important regulator of transepithelial Na transport. Regulation is primarily achieved at the level of the apical Na channel, making the Na influx the rate-limiting step in Na reabsorption.


2007 ◽  
Vol 51 (2T) ◽  
pp. 82-85 ◽  
Author(s):  
Y. Nakashima ◽  
Y. Higashizono ◽  
N. Nishino ◽  
H. Kawano ◽  
M.K. Islam ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document