scholarly journals Studies on Fruit Pectin in the Development of Tablet Formulations of Ibuprofen

Author(s):  
Nausheen Tariq Siddiqui ◽  
Ramla Binte Baber ◽  
Rsfi Akhtar Sultan ◽  
Iqbal Azhar ◽  
Waseemuddin Ahmed ◽  
...  

Background: Pectin, a naturally occurring polysaccharide is more than a food additive and has got amazing properties as a gelling agent and as a binder. Objective: The current research entails the extraction and identification of pectin from peels of selected fruits mango (Magnifera indica) and banana (Musa paradisiaca) by direct heating and using alcohol as precipitating agent. The potential of pectin as a binding agent in tablet formulation was evaluated by screening its micromeritics and post compression properties. Method: quadruple formulations of ibuprofen with crude peel pectin extracted from mango and banana in concentration of 50, 75, 100 and 125 mg respectively were employed in the tablet manufacture process by wet granulation method. Results: Successful formulation of tablet was done with the extracted pectin from the two fruit peels. The micromeritics properties showed good binding and flowing properties. An increase in concentration of pectin increased the hardness and also the dissolution of tablets up to a certain extent. The disintegration time was suitable for all formulations. Conclusion: It was concluded that pectin extracted from mango and banana peels can be used as a super disintegrating agent in pharmaceutical formulations, where needed.

2021 ◽  
Vol 16 (2) ◽  
pp. 111-117
Author(s):  
B.B. Mohammed ◽  
E.J. John ◽  
G.T. Abdulsalam ◽  
K.P. Bahago

Background: Tablets must be able to release the active drug in the gastrointestinal tract for absorption. The release profile of solid pharmaceutical dosage formulations can be quantified by assessing the disintegration and dissolution times tests. Binders are adhesives either from sugar or polymeric material that are added to tablet formulations to provide the cohesiveness required for the bonding together of the granules under compaction to form tablets.Objective: The objective of the study was to formulate and assess ibuprofen tablets using different concentrations of binders (Acacia and Gelatin).Methods: The granules were prepared using wet granulation method and analysed for flow properties based on USP/NF protocols. After granule compression, the tablets release profiles were thereafter assessed via the tablet dissolution and disintegration tests.Results: Weight variation, thickness and diameter were within the acceptable values for all batches indicative of a uniform flow. Batches with binder concentrations of 10 % and 20 % failed disintegration test due to a disintegration time above 15 min while the release rate for batches 1 and 4 was about 88 % in 60 min as against the other batches whose release rate was less than 50 % in 60 min as a result of increasing their binder concentrations.Conclusion: The study concluded that increasing the concentration of acacia and gelatin above 5% led to a decrease in percentage of drug released and an increase in disintegration time above 30 mins because 5% batches gave the best release profiles.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Y. Eshovo Apeji ◽  
IY. Muhammad ◽  
A. Kehinde Olowosulu ◽  
G. Owoicho Okpanachi ◽  
A. Rukayat Oyi

Abstract Diluents are essential components of a tablet formulation. The type of diluent used in a formulation influences the quality of tablets produced from that formulation. The aim of this study was to evaluate the tableting properties of co-processed excipients (C-PEs) incorporated as diluents in tablet formulation by wet granulation. Metronidazole tablets were prepared by wet granulation incorporating different diluents that were either single component excipients (SCEs) (lactose and microcrystalline cellulose) or C-PEs (Ludipress®, StarLac®, Prosolv® and AVICEL®HFE). The granules obtained for each formulation were evaluated for particle size analysis, flow properties and compression properties. Tablets weighing 500 mg were compressed from the metronidazole granules on a Single Station Tablet Press using a 12 mm punch and die tooling system. The tablets were kept for 24 h post-production, and the properties of weight uniformity, thickness, tensile strength, friability, disintegration time and dissolution profile evaluated subsequently. Results of granule properties showed that variations in parameters evaluated was as a result of differences in the type and composition of diluent used in formulation. Compactibility and tabletability profile of metronidazole granules revealed a better performance with granules processed with C-PE based diluents compared to SCE-based diluents. Tablets formulated with C-PEs as diluents were uniform in tablet weight, disintegrated faster and yielded a faster drug release compared to tablet formulations containing SCEs as diluent. This study reveals the performance advantage of C-PEs as diluents in tablets manufactured by wet granulation and highlights the importance of rational selection of excipients during tablet formulation.


Author(s):  
J. A. Avbunudiogba ◽  
O. Oghenekevwe

Aims: The pharmaceutical world has been paying increasing attention to the extraction, development and use of natural gums as binders in the formulation of solid dosage forms. The use of natural gums as binders is more advantageous than the use of synthetic ones due to availability, low cost, biodegradability and biocompatibility. In this study, gum extracted from Grewia species was compared with that fromAcacia in metronidazole tablets. Study Design: Ten batches of metronidazole tablets were formulated with varied concentration of Grewiaspp gum and Acacia gum. Place and Duration of Study: The study was carried out in Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Delta State University, Abraka, Nigeria; between January and December 2019. Methodology: Five batches of metronidazole tablets containing 0.5, 0.75, 1.0, 1.25 and 1.5% w/w of Grewia gum were preparedby wet granulation. Resulting granules were characterised by measuring flow and packing properties. In other experiments, five batches of tablets were formulated using same concentration of gum, with Acacia gum substituted for Grewia gum. Both sets of granules were compressed into tablets using tableting machine at a load of 27 arbitrary units. Tablets so formed were evaluated for hardness, friability, disintegration time, drug content and drug release profiles. Drug – excipient interaction was investigated with FTIR. Results: The resulting metronidazole tablets showed hardness of 5.46 kgF to 7.87 kgF (Grewiagum) and 6.06 kgF-8.20 kgF (Acacia gum). Friability percentages of all the batches were above 1% except for A3-A5 and B5 which are less than 1%. All formulations released more than 75 % of the drug content within 60 min. The FTIR analysis revealed no interaction between the metronidazole and Grewia species gum. Conclusion: Metronidazole granules and tablets were successfully prepared using Grewiagum and showed comparable pre-compression and post-compression properties with those formulated with Acacia.


Author(s):  
S. U. Kankanamge ◽  
A. G. K. Neranja ◽  
K. D. S. Sandarenu

Disintegrants are agents which are integrated to tablets and some encapsulated formulations in order to promote the breakup of the tablet and capsule “slugs” into more small fragments in an aqueous environment which thereafter increment the available surface area and promoting a more rapid release of the drug substance.  The development of new excipients for potential use as disintegrant agent in tablet formulations continues to be of interest. This is because different disintegrant agents can be useful in promoting penetration of moisture and dispersion of the tablet matrix and disintegration of tablet has received considerable attention at present as an essential step in obtaining fast drug release. Natural polymers such as starches, gums, mucilage, and dried fruits utilized as binder, diluent, and disintegrants to increase the solubility of poorly water-soluble drug, decrease the disintegration time, and provide nutritional supplement. Natural disintegrants are safe and economical than synthetic disintegrants such as Polyvinylpyrrolidone (PVP). Therefore, in the present review, an attempt has been made to reveal the importance of the natural disintegrants in the pharmaceutical formulations.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Kidan Haily Desta ◽  
Ebisa Tadese ◽  
Fantahun Molla

This study is aimed at evaluating the binding effect of Acacia etbaica gum in granule and tablet formulations using paracetamol as a model drug. Some physicochemical properties of the purified gum such as pH, the presence of tannin and dextrin, solubility, viscosity, loss on drying, total ash value, water solubility index, swelling power, moisture sorption, and powder flow properties were investigated. Paracetamol granules were prepared using wet granulation method at 2%, 4%, 6%, and 8% w / w of the Acacia etbaica gum and compared with granules prepared with reference binders (PVP K-30 and Acacia BP) in similar concentrations. The granules were characterized for bulk and tapped densities, compressibility index and Hausner ratio, angle of repose, flow rate, and friability. Finally, the prepared granules were compressed into tablets and evaluated for different tablet characteristics: weight uniformity, thickness, diameter, crushing strength, tensile strength, friability, disintegration time, and in vitro release profile. The physicochemical characterization revealed that tannins and dextrin are absent in the gum, and the gum has acidic pH. Both the moisture content and total ash values were within the official limits. Furthermore, the gum was found to be soluble in cold and hot water but insoluble in organic solvent and exhibited a shear thickening viscosity profile and excellent flow properties with excellent compressibility. The granules prepared with the gum of Acacia etbaica and reference binders showed good particle size distribution and excellent flow and compressibility properties. All the prepared tablets passed pharmacopeial specifications with respect to their uniformity of weight, thickness, and disintegration time. Tablets formulated with Acacia etbaica gum and acacia BP meet the compendial specification for friability at binder concentrations more than 2%. Drug release properties of all the batches formulated with Acacia etbaica, PVP, and acacia BP complied with the pharmacopeial specification. It can be concluded that the gum of Acacia etbaica could be explored as an alternative excipient for its binder effect in granule and tablet formulations.


Author(s):  
Sylvester Okhuelegbe Eraga ◽  
Ogochukwu Augustina Meko ◽  
Magnus Amara Iwuagwu

The physicochemical properties of excipients play vital roles in the process of tablet manufacture. A comparative evaluation of the binding and disintegrant properties of xerogels of cassava and cocoyam starches with microcrystalline cellulose (MCC) in paracetamol tablet formulations was investigated. Cassava and cocoyam starches were extracted from their tubers following standard procedures. Xerogels of both starches were prepared and used to prepare batches of paracetamol granules for direct compression into tablets at concentrations of 3.8, 7.6 and 11.4 %w/w and with 7.6 %w/w MCC for comparison. Granules were analysed for their flow properties and drug-excipient compatibility and the tablets were evaluated for their tablets properties. The paracetamol granules prepared with the xerogel powders were comparable in flow properties with those made with MCC. Differential Scanning Calorimetry and Fourier Transform Infrared analyses revealed no interaction between the xerogel powders and paracetamol. Increase in concentrations of the xerogel powders led to an increase in hardness, wetting time, water sorption, disintegration time, drug release and a decrease in friability of the tablets. Tablets formulated with the starch xerogel powders met compendial requirements at 7.6 %w/w concentration. The study confirms the potentials of xerogels of cassava and cocoyam starches as dry granulation binders/disintegrants. Tablets made with the xerogel powders are superior to those made with MCC in terms of disintegration time but MCC produces harder and less friable tablets, as a superior binder.


2007 ◽  
Vol 7 (3) ◽  
pp. 279-283 ◽  
Author(s):  
Alija Uzunović ◽  
Edina Vranić

Most pharmaceutical formulations also include a certain amount of lubricant to improve their flowability and prevent their adhesion to the surfaces of processing equipment. Magnesium stearate is an additive that is most frequently used as a lubricant. Magnesium stearate is capable of forming films on other tablet excipients during prolonged mixing, leading to a prolonged drug liberation time, a decrease in hardness, and an increase in disintegration time. It is hydrophobic, and there are many reports in the literature concerning its adverse effect on dissolution rates.The objective of this study was to evaluate the effects of two different concentrations of magnesium stearate on dissolution properties of ranitidine hydrochloride coated tablet formulations labeled to contain 150 mg. The uniformity content was also checked.During the drug formulation development, several samples were designed for choice of the formulation. For this study, two formulations containing 0,77 and 1,1% of magnesium stearate added in the manufacture of cores were chosen. Fraction of ranitidine hydrochloride released in dissolution medium was calculated from calibration curves. The data were analyzed using pharmaco-peial test for similarity of dissolution profiles (f2 equation), previously proposed by Moore and Flanner.Application of f2 equation showed differences in time-course of ranitidine hydrochloride dissolution properties. The obtained values indicate differences in drug release from analyzed ranitidine hydrochloride formulations and could cause differences in therapeutic response.


2020 ◽  
Vol 19 (3) ◽  
pp. 459-465
Author(s):  
Chukwuemeka P. Azubuike ◽  
Uloma N. Ubani-Ukoma ◽  
Abiola R. Afolabi ◽  
Ibilola M. Cardoso-Daodu

Purpose: To evaluate the super-disintegrant potentials of acid modified Borassus aethiopum starch (AMS) in comparison with native starch (NS) and commercial disintegrant sodium starch glycolate (SSG). Methods: Compatibility of AMS with paracetamol powder was evaluated using Fourier transform infrared (FTIR) spectrophotometry. Seven batches of paracetamol granules and tablets were prepared by wet granulation. AMS and NS were employed as disintegrants at concentrations of 2.43, 4.86 and 9.72 %w/w, respectively while 4.86 %w/w SSG was used as standard disintegrant. All the batches of the granules were compressed under the same compression settings. The properties of the granules as well as those of the tablets were assessed. Results: AMS was compatible with paracetamol powder as no noticeable interaction was observed in FTIR study. The paracetamol tablets formulated using AMS as disintegrant demonstrated satisfactory friability, weight uniformity, hardness, and superior disintegration characteristics to the formulations containing NS and SSG as disintegrant. Even at a lower concentration (2.43 %w/w), AMS possessed better disintegrant property than NS and SSG. AMS and NS had dimensionless disintegrant quantity of 1.447 and 0.005, respectively. As expected, increase in AMS concentration showed a decrease in disintegration time. Conclusion: AMS could be a potential low-cost super-disintegrant in formulation of paracetamol tablets. Keywords: Acid modified starch, Borassus aethiopum, Disintegrant, Compatibility


2011 ◽  
Vol 47 (4) ◽  
pp. 845-854 ◽  
Author(s):  
John Oluwasogo Ayorinde ◽  
Oludele Adelanwa Itiola ◽  
Oluwatoyin Adepeju Odeku ◽  
Michael Ayodele Odeniyi

The influence of binder type and process parameters on the compression properties and microbial survival in diclofenac tablet formulations were studied using a novel gum from Albizia zygia. Tablets were produced from diclofenac formulations containing corn starch, lactose and dicalcium phosphate. Formulations were analyzed using the Heckel and Kawakita plots. Determination of microbial viability in the formulations was done on the compressed tablets of both contaminated and uncontaminated tablets prepared from formulations. Direct compression imparted a higher plasticity on the materials than the wet granulation method. Tablets produced by wet granulation presented with a higher crushing strength than those produced by the direct compression method. Significantly higher microbial survival (p< 0.05) was obtained in formulations prepared by direct compression. The percent survival of Bacillus subtilis spores decreased with increase in binder concentration. The study showed that Albizia gum is capable of imparting higher plasticity on materials and exhibited a higher reduction of microbial contaminant in the formulations. The direct compression method produced tablets of reduced viability of microbial contaminant.


2020 ◽  
Vol 16 (1) ◽  
pp. 31-37
Author(s):  
S.O. Eraga ◽  
D.N. Elue ◽  
M.A. Iwuagwu

Background: Natural materials have gained a lot of significance in the field of drug delivery because of their cost effectiveness and ready availability.Purpose: The study aimed at evaluating the direct compression property of microcrystalline cellulose from cassava fermentation waste in directly compressed paracetamol tablet formulations.Methods: Alkali delignification of the dried cassava fermentation fibres, followed by bleaching and acid depolymerisation was employed in the extraction of α-cellulose and conversion to microcrystalline cellulose (MCC). The MCC obtained and Avicel® were used at different concentrations (5.0-15 %w/w) to formulate batches of paracetamol tablets by directed compression. A comparative evaluation of the formulated paracetamol granules and tablets properties were undertaken.Results: The paracetamol granules formulated showed good flowability with Hausner’s ratios of 1.15-1.25, Carr’s indices of 13.10-20.00 % and angles of repose ≤ 34.41°. The formulated tablets showed good hardness (> 5.0 kgf) and disintegration time within 10 min. Only tablets containing 5.0 and 7.5 %w/w of the test MCC failed the BP dissolution test specification for tablets which stipulates that at least 70 % of the drug should be in solution after 30 min.Conclusion: This study has shown that the extracted MCC has direct compression ability evidenced in the mechanical strength of the formulated paracetamol tablets. The tablet properties of the formulated paracetamol tablets revealed pharmaceutically acceptable tablets though they were not comparable with Avicel® at all concentrations and the MCC may serve as an alternative local source for direct compression excipient. Keywords: Cassava, microcrystalline cellulose, direct compression, paracetamol, tablets


Sign in / Sign up

Export Citation Format

Share Document